Rules for Time Travelers

With the new Star Trek out, it’s long past time (as it were) that we laid out the rules for would-be fictional time-travelers. (Spoiler: Spock travels to the past and gets a sex change and becomes Kirk’s grandfather lover.*) Not that we expect these rules to be obeyed; the dramatic demands of a work of fiction will always trump the desire to get things scientifically accurate, and Star Trek all by itself has foisted half a dozen mutually-inconsistent theories of time travel on us. But time travel isn’t magic; it may or may not be allowed by the laws of physics — we don’t know them well enough to be sure — but we do know enough to say that if time travel were possible, certain rules would have to be obeyed. And sometimes it’s more interesting to play by the rules. So if you wanted to create a fictional world involving travel through time, here are 10+1 rules by which you should try to play.

0. There are no paradoxes.

This is the overarching rule, to which all other rules are subservient. It’s not a statement about physics; it’s simply a statement about logic. In the actual world, true paradoxes — events requiring decidable propositions to be simultaneously true and false — do not occur. Anything that looks like it would be a paradox if it happened indicates either that it won’t happen, or our understanding of the laws of nature is incomplete. Whatever laws of nature the builder of fictional worlds decides to abide by, they must not allow for true paradoxes.

1. Traveling into the future is easy.

We travel into the future all the time, at a fixed rate: one second per second. Stick around, you’ll be in the future soon enough. You can even get there faster than usual, by decreasing the amount of time you experience elapsing with respect to the rest of the world — either by low-tech ways like freezing yourself, or by taking advantage of the laws of special relativity and zipping around near the speed of light. (Remember we’re talking about what is possible according to the laws of physics here, not what is plausible or technologically feasible.) It’s coming back that’s hard.

2. Traveling into the past is hard — but maybe not impossible.

If Isaac Newton’s absolute space and time had been the correct picture of nature, we could simply say that traveling backwards in time was impossible, and that would be the end of it. But in Einstein’s curved-spacetime universe, things are more flexible. From your own personal, subjective point of view, you always more forward in time — more technically, you move on a timelike curve through spacetime. But the large-scale curvature of spacetime caused by gravity could, conceivably, cause timelike curves to loop back on themselves — that is to say, become closed timelike curves — such that anyone traveling on such a path would meet themselves in the past. That’s what respectable, Einstein-approved time travel would really be like. Of course, there’s still the little difficulty of warping spacetime so severely that you actually create closed timelike curves; nobody knows a foolproof way of doing that, or even whether it’s possible, although ideas involving wormholes and cosmic strings and spinning universes have been bandied about.

3. Traveling through time is like traveling through space.

I’m only going to say this once: there would be no flashing lights. At least, there would only be flashing lights if you brought along some strobes, and decided to start them flashing as you traveled along your closed timelike curve. Likewise, there is no disappearance in a puff of smoke and re-appearing at some other time. Traveling through time is just like traveling through space: you move along a certain path, which (we are presuming) the universe has helpfully arranged so that your travels bring you to an earlier moment in time. But a time machine wouldn’t look like a booth with spinning wheels that dematerializes now and rematerializes some other time; it would look like a rocket ship. Or possibly a DeLorean, in the unlikely event that your closed timelike curve started right here on Earth and never left the road.

Think of it this way: imagine there were a race of super-intelligent trees, who could communicate with each other using abstract concepts but didn’t have the ability to walk. They might fantasize about moving through space, and in their fantasies “space travel” would resemble teleportation, with the adventurous tree disappearing in a puff of smoke and reappearing across the forest. But we know better; real travel from one point to another through space is a continuous process. Time travel would be like that.

4. Things that travel together, age together.

If you travel through time, and you bring along with you some clocks or other objects, all those things experience time in exactly the same way that you do. In particular, both you and the clocks march resolutely forward in time, from your own perspective. You don’t see clocks spinning wildly backwards, nor do you yourself “age” backwards, and you certainly don’t end up wearing the clothes you favored back in high school. Your personal experience of time is governed by clocks in your brain and body — the predictable beating of rhythmic pulses of chemical and biological processes. Whatever flow of time is being experienced by those processes — and thus by your conscious perception — is also being experienced by whatever accompanies you on your journey.

5. Black holes are not time machines.

Sadly, if you fell into a black hole, it would not spit you out at some other time. It wouldn’t spit you out at all — it would gobble you up and grow slightly more corpulent in the process. If the black hole were big enough, you might not even notice when you crossed the point of no return defined by the event horizon. But once you got close to the center of the hole, tidal forces would tug at you — gently at first, but eventually tearing you apart. The technical term is spaghettification. Not a recommended strategy for would-be time adventurers.

Wormholes — tunnels through spacetime, which in principle can connect widely-separated events — are a more promising alternative. Wormholes are to black holes as elevators are to deep wells filled with snakes and poisoned spikes. The problem is, unlike black holes, we don’t know whether wormholes exist, or even whether they can exist, or how to make them, or how to preserve them once they are made. Wormholes want to collapse and disappear, and keeping them open requires a form of negative energies. Nobody knows how to make negative energies, although they occasionally slap the name “exotic matter” on the concept and pretend it might exist.