Higgs

New Course: The Higgs Boson and Beyond

Happy to announce that I have a new course out with The Great Courses (produced by The Teaching Company). This one is called The Higgs Boson and Beyond, and consists of twelve half-hour lectures. I previously have done two other courses for them: Dark Matter and Dark Energy, and Mysteries of Modern Physics: Time. Both of those were 24 lectures each, so this time we’re getting to the good stuff more quickly.

The inspiration for the course was, naturally, the 2012 discovery of the Higgs, and you’ll be unsurprised to learn that there is some overlap with my book The Particle at the End of the Universe. It’s certainly not just me reading the book, though; the lecture format is very different than the written word, and I’ve adjusted the topics and order appropriately. Here’s the lineup:

1205---packaging_flat.1423223209

  1. The Importance of the Higgs Boson
  2. Quantum Field Theory
  3. Atoms to Particles
  4. The Power of Symmetry
  5. The Higgs Field
  6. Mass and Energy
  7. Colliding Particles
  8. Particle Accelerators and Detectors
  9. The Large Hadron Collider
  10. Capturing the Higgs Boson
  11. Beyond the Standard Model
  12. Frontiers: Higgs in Space

Because it is a course, the presentation here is in a more strictly logical order than it is in the book, starting from quantum field theory and working our way up. It’s still aimed at a completely non-expert audience, though a bit of enthusiasm for physics will be helpful for grappling with the more challenging material. And it’s available in both audio-only or video — but I have to say they did a really nice job with the graphics this time around, so the video is worth having.

And it’s on sale! Don’t know how long that will last, but there’s a big difference between regular prices at The Great Courses and the sale prices. A bargain either way!

New Course: The Higgs Boson and Beyond Read More »

27 Comments

Nobel Day

Today was the Nobel Prize ceremony, including of course the Physics Prize to François Englert and Peter Higgs. Congratulations once again to them!

Englert and Higgs

(Parenthetically, it’s sad that the Nobel is used to puff up national pride. In Belgium, Englert gets into the headline but not Higgs; in the UK, it’s the other way around.)

I of course had nothing to do with the physics behind this year’s Nobel, but I did write a book about it, so I’ve had a chance to do a little commentating here and there. I wrote a short piece for The Independent that tries to place the contribution in historical context. I’ve had a bit of practice by now in talking about this topic to general audiences, so consider this the distillation of the best I can do! (It’s a UK newspaper, so naturally only Higgs is mentioned in the headline.) I love how, at the bottom of the story, you can register your level of agreement, from “strongly agree” to “strongly disagree.” And if you prefer your words spoken aloud, here I am on the BBC talking about the book.

270px-Murray_Gell-Mann_-_World_Economic_Forum_Annual_Meeting_2012Meanwhile here at Caltech, we welcomed back favorite son Murray Gell-Mann (who spends his days at the Santa Fe Institute these days) for the 50th anniversary of quarks. One of the speakers, Geoffrey West, pointed out that no Nobel was awarded for the idea of quarks. Gell-Mann did of course win the Nobel in 1969, but that was “for his contributions and discoveries concerning the classification of elementary particles and their interactions”. In other words, strangeness, SU(3) flavor symmetry, the Eightfold Way, and the prediction of the Omega-minus particle. (Other things Gell-Mann helped invent: kaon mixing, the renormalization group, the sigma model for pions, color and quantum chromodynamics, the seesaw mechanism for neutrino masses, and the decoherent histories approach to quantum mechanics. He is kind of a big deal.)

But, while we now understand SU(3) flavor symmetry in terms of the quark model (the up/down/strange quarks are all light compared to the QCD scale, giving rise to an approximate symmetry), the idea of quarks itself wasn’t honored by the 1969 prize. If it had been, the prize certainly would have been shared by George Zweig, who proposed the idea independently. So there’s still time to give out the Nobel for the quark model! Perhaps Gell-Mann and Zweig could share it with Harald Fritzsch, who collaborated with Gell-Mann on the invention of color and QCD. (The fact that QCD is asymptotically free won a prize for Gross, Politzer and Wilczek in 2004, but there hasn’t been a prize for the invention of the theory itself.) Modern particle physics has such a rich and fascinating history, we should honor it as accurately as possible.

Nobel Day Read More »

19 Comments

Winton Prize

Greetings from Paris, where we just arrived from London via the technological miracle of the Chunnel. I was in London in part to take place in the award ceremony for the Royal Society Winton Prize for science books. Which, to my honest surprise, I won!

winton Not to everyone’s surprise, as it turned out. As the big moment approached, with all six short-listed authors and their friends sitting nervously in the audience, President of the Royal Society Paul Nurse took the podium to announce the winner. He played up the tension quite a bit, joking that nobody in the room, not even he, knew what name was written in the sealed envelope he held in his hands. Unbeknownst to Nurse, a slight technical glitch had caused a PowerPoint slide showing The Particle at the End of the Universe to be displayed — with the word “Winner.” So actually, he was the only one in the room who didn’t know by that point.

Other than that amusing diversion, however, it was a great event overall. It’s such a pleasure to experience the strong culture of public science that is thriving in the UK, and the Royal Society deserves a lot of credit in helping to bring science writing to a wider audience.

I wouldn’t have wanted to be on the prize jury, however. All of the six shortlisted books are fascinating in their own ways, and at some point it’s comparing apples to pears. I wouldn’t have been surprised if any of the other contenders had walked away with the trophy:

But, you know, someone has to win. I’ll admit I was rooting for me. Hearing all the congratulations from Twitter/Facebook/email etc. has been extremely heart-warming. (And yes, we’re all hoping that there’s more gender/ethnic diversity on future shortlists…)

Recognizing all the while, of course, what I owe to many other people. While writing this book I was as much of a journalist/evangelist hybrid as I was a scientist, helping to spread the word of the amazing work done by thousands of experimental physicists and technicians, and I hope that the book made their contribution more widely appreciated. Most of all, I fully appreciate that I’m not even the best writer in my own house (which only has two people in it). Jennifer is going to quickly tire of hearing me say “Who’s the award-winning author around here, anyway?”

Winton Prize Read More »

30 Comments

Englert and Higgs

Congratulations to Francois Englert and Peter Higgs for winning this year’s Nobel Prize in Physics. However annoying the self-imposed rules are that prevent the prize from more accurately reflecting the actual contributions, there’s no question that the work being honored this time around is truly worthy.

To me, the proposal of the Higgs mechanism is one of the absolutely most impressive examples we have of the precision and restrictiveness of Nature’s workings at a deep level — something that sometimes gets lost in the hand-waving analogies we are necessarily reduced to when trying to explain hard ideas to a wide audience. There they were, back in 1964 — Englert and Higgs, as well as Anderson, Brout, Guralnik, Hagen, and Kibble — confronted with a relatively abstract-sounding problem: how can you make a model for the nuclear forces that is based on local symmetry, like electromagnetism and gravity, but nevertheless only stretches over short ranges, like we actually observe? (None of these folks were thinking about “giving particles mass”; that only came in 1967, with Weinberg and Salam.)

It sounds like a pretty esoteric, open-ended question. And they just sat down and thought about it, with only very crude guidance from actual data. And they went out on a limb (one that had been constructed by other physicists, like Yochiro Nambu and Jeffrey Goldstone) and put forward a dramatic idea: empty space is filled with an invisible field that acts like fog, attenuating the lines of force and keeping the interaction short-range. How would you ever know that such an idea were true? Only because you could imagine poking that field a bit, to set it vibrating, and observe the vibrations as a new kind of particle.

And forty-eight years later, billions of dollars and thousands of dedicated people, that particle finally showed up, as a little bump amidst trillions of collision events. Amazing.

cms-2012-clean

atlas-2012-clean

Here are my Top Ten Higgs Boson Facts. And here I am yakking about it on Sixty Symbols:

Talking about the Higgs Boson - Sixty Symbols

Professors Englert and Higgs have every reason to be very proud, but this prize is really a testament to human intellectual curiosity and perseverance. And well deserved, at that.

Englert and Higgs Read More »

17 Comments

Paperback Day!

Young books grow up so fast these days, don’t they? It seems like just last November that The Particle at the End of the Universe was born, kicking and screaming. And now it’s all grown up, and there is already a paperback edition. What’s a concerned parent to do? (Now I know how Billy Ray Cyrus must feel.)

I should point out that, not only is the paperback less expensive than the hardcover (and therefore very easy to give as a present or even hand out to strangers whose day you’d like to brighten), there is also a new afterword. Among other things, it mentions the possibility of a phase transition and the end of the universe as we know it. And I corrected the picture of particles moving in a magnetic field, which got the right-hand rule wrong in the first printing. Science is hard!

Particle at the End of the Universe

The response to the book has been enormously gratifying. It got good reviews, was on a couple best-of-2012 lists, and has been longlisted/shortlisted for some prizes. Not bad for an atheist-liberal-cultist screed.

Paperback Day! Read More »

18 Comments

The Higgs Boson vs. Boltzmann Brains

Kim Boddy and I have just written a new paper, with maybe my favorite title ever.

Can the Higgs Boson Save Us From the Menace of the Boltzmann Brains?
Kimberly K. Boddy, Sean M. Carroll
(Submitted on 21 Aug 2013)

The standard ΛCDM model provides an excellent fit to current cosmological observations but suffers from a potentially serious Boltzmann Brain problem. If the universe enters a de Sitter vacuum phase that is truly eternal, there will be a finite temperature in empty space and corresponding thermal fluctuations. Among these fluctuations will be intelligent observers, as well as configurations that reproduce any local region of the current universe to arbitrary precision. We discuss the possibility that the escape from this unacceptable situation may be found in known physics: vacuum instability induced by the Higgs field. Avoiding Boltzmann Brains in a measure-independent way requires a decay timescale of order the current age of the universe, which can be achieved if the top quark pole mass is approximately 178 GeV. Otherwise we must invoke new physics or a particular cosmological measure before we can consider ΛCDM to be an empirical success.

We apply some far-out-sounding ideas to very down-to-Earth physics. Among other things, we’re suggesting that the mass of the top quark might be heavier than most people think, and that our universe will decay in another ten billion years or so. Here’s a somewhat long-winded explanation.

A room full of monkeys, hitting keys randomly on a typewriter, will eventually bang out a perfect copy of Hamlet. Assuming, of course, that their typing is perfectly random, and that it keeps up for a long time. An extremely long time indeed, much longer than the current age of the universe. So this is an amusing thought experiment, not a viable proposal for creating new works of literature (or old ones).

There’s an interesting feature of what these thought-experiment monkeys end up producing. Let’s say you find a monkey who has just typed Act I of Hamlet with perfect fidelity. You might think “aha, here’s when it happens,” and expect Act II to come next. But by the conditions of the experiment, the next thing the monkey types should be perfectly random (by which we mean, chosen from a uniform distribution among all allowed typographical characters), and therefore independent of what has come before. The chances that you will actually get Act II next, just because you got Act I, are extraordinarily tiny. For every one time that your monkeys type Hamlet correctly, they will type it incorrectly an enormous number of times — small errors, large errors, all of the words but in random order, the entire text backwards, some scenes but not others, all of the lines but with different characters assigned to them, and so forth. Given that any one passage matches the original text, it is still overwhelmingly likely that the passages before and after are random nonsense.

That’s the Boltzmann Brain problem in a nutshell. Replace your typing monkeys with a box of atoms at some temperature, and let the atoms randomly bump into each other for an indefinite period of time. Almost all the time they will be in a disordered, high-entropy, equilibrium state. Eventually, just by chance, they will take the form of a smiley face, or Michelangelo’s David, or absolutely any configuration that is compatible with what’s inside the box. If you wait long enough, and your box is sufficiently large, you will get a person, a planet, a galaxy, the whole universe as we now know it. But given that some of the atoms fall into a familiar-looking arrangement, we still expect the rest of the atoms to be completely random. Just because you find a copy of the Mona Lisa, in other words, doesn’t mean that it was actually painted by Leonardo or anyone else; with overwhelming probability it simply coalesced gradually out of random motions. Just because you see what looks like a photograph, there’s no reason to believe it was preceded by an actual event that the photo purports to represent. If the random motions of the atoms create a person with firm memories of the past, all of those memories are overwhelmingly likely to be false.

This thought experiment was originally relevant because Boltzmann himself (and before him Lucretius, Hume, etc.) suggested that our world might be exactly this: a big box of gas, evolving for all eternity, out of which our current low-entropy state emerged as a random fluctuation. As was pointed out by Eddington, Feynman, and others, this idea doesn’t work, for the reasons just stated; given any one bit of universe that you might want to make (a person, a solar system, a galaxy, and exact duplicate of your current self), the rest of the world should still be in a maximum-entropy state, and it clearly is not. This is called the “Boltzmann Brain problem,” because one way of thinking about it is that the vast majority of intelligent observers in the universe should be disembodied brains that have randomly fluctuated out of the surrounding chaos, rather than evolving conventionally from a low-entropy past. That’s not really the point, though; the real problem is that such a fluctuation scenario is cognitively unstable — you can’t simultaneously believe it’s true, and have good reason for believing its true, because it predicts that all the “reasons” you think are so good have just randomly fluctuated into your head!

All of which would seemingly be little more than fodder for scholars of intellectual history, now that we know the universe is not an eternal box of gas. The observable universe, anyway, started a mere 13.8 billion years ago, in a very low-entropy Big Bang. That sounds like a long time, but the time required for random fluctuations to make anything interesting is enormously larger than that. (To make something highly ordered out of something with entropy S, you have to wait for a time of order eS. Since macroscopic objects have more than 1023 particles, S is at least that large. So we’re talking very long times indeed, so long that it doesn’t matter whether you’re measuring in microseconds or billions of years.) Besides, the universe is not a box of gas; it’s expanding and emptying out, right?

Ah, but things are a bit more complicated than that. We now know that the universe is not only expanding, but also accelerating. The simplest explanation for that — not the only one, of course — is that empty space is suffused with a fixed amount of vacuum energy, a.k.a. the cosmological constant. Vacuum energy doesn’t dilute away as the universe expands; there’s nothing in principle from stopping it from lasting forever. So even if the universe is finite in age now, there’s nothing to stop it from lasting indefinitely into the future.

But, you’re thinking, doesn’t the universe get emptier and emptier as it expands, leaving no particles to fluctuate? Only up to a point. A universe with vacuum energy accelerates forever, and as a result we are surrounded by a cosmological horizon — objects that are sufficiently far away can never get to us or even send signals, as the space in between expands too quickly. And, as Stephen Hawking and Gary Gibbons pointed out in the 1970’s, such a cosmology is similar to a black hole: there will be radiation associated with that horizon, with a constant temperature.

In other words, a universe with a cosmological constant is like a box of gas (the size of the horizon) which lasts forever with a fixed temperature. Which means there are random fluctuations. If we wait long enough, some region of the universe will fluctuate into absolutely any configuration of matter compatible with the local laws of physics. Atoms, viruses, people, dragons, what have you. The room you are in right now (or the atmosphere, if you’re outside) will be reconstructed, down to the slightest detail, an infinite number of times in the future. In the overwhelming majority of times that your local environment does get created, the rest of the universe will look like a high-entropy equilibrium state (in this case, empty space with a tiny temperature). All of those copies of you will think they have reliable memories of the past and an accurate picture of what the external world looks like — but they would be wrong. And you could be one of them.

That would be bad. …

The Higgs Boson vs. Boltzmann Brains Read More »

76 Comments

Goddamn Particle

Hey, did you hear that Planck released its results today? The universe remains preposterous, if still pretty awesome. And it might be lopsided, which is intriguing.

Planck says that dark matter makes up 26% of the universe, while the best-fit WMAP number from a few years ago was 23%. This led me to joke on Twitter that we needed a model in which the dark matter density was rapidly increasing. Just a joke, people!

I hope to say something more substantive soon, but in the meantime there’s plenty of good stuff around the web; at the risk of leaving many people out, see Ethan Siegel, or Jester, or simply refuse to see the universe through anyone’s filter but your own and read the original papers. (An even thirty of them, helpfully indexed by the ultramodern system of Roman numerals.)

Meanwhile, our old friend the Higgs boson has not gone away. Here’s the second of the videos I did for Sixty Symbols while visiting the UK (after the first one I did on quantum mechanics).

Talking about the Higgs Boson - Sixty Symbols

The comments on the YouTube page are nicer than average. Maybe it’s the British temperament.

Goddamn Particle Read More »

31 Comments

What “The God Particle” Hath Wrought

You’ve doubtless heard the joke: We can’t call the Higgs boson the “God Particle” any more, because now we have tangible evidence that it exists.

But the label “God Particle,” attached to the poor unsuspecting Higgs boson by Leon Lederman and Dick Teresi, continues to wreak havoc on physicists’ attempts to clearly explain what is going on. Last week’s announcements from CERN that the new particle discovered last July is looking more and more like the Higgs predicted by the Standard Model generated stories like this one, from CBS news:

The Higgs boson is often called “the God particle” because it’s said to be what caused the “Big Bang” that created our universe many years ago. The nickname caught on so quickly (even though scientists and clergy alike do not care for it) partly because it’s a great explanation of what it’s supposed to do — the Higgs boson is what joins everything and gives it matter.

That might be the worst paragraph I’ve ever read about the Higgs boson, and I’ve read quite a few. (H/t Faye Flam.) Originally I thought the journalist was just making things up, but it turns out that it’s Michio Kaku’s fault. (H/t Matt Strassler on Facebook.) There is a video linked to the article, in which Kaku says that the Higgs helped cause the Big Bang, and that’s why it’s called the God Particle. Another example where it would have been tempting to rag on sloppy popular journalism, where actually it’s a supposed scientist who is largely to blame. (Although the above paragraph is also wrong about things it should be easy to get right.)

For the record, the Higgs had nothing whatsoever to do with causing the Big Bang. (Kaku tries to link it to inflation, but they’re not related.) It also doesn’t “join everything,” whatever that means. It does give mass to elementary particles like electrons and quarks, which isn’t the same as giving “matter” (since that kind of doesn’t make any sense), and besides which it doesn’t give mass to protons and neutrons and therefore most of the mass in ordinary objects.

The “God Particle” label, despite being very catchy and therefore leading to more publicity than most elementary particles manage to muster, has done more harm than good for the public understanding of science. Non-experts, hearing that physicists have named something after God, might actually think they were being serious. Imagine that.

[Update: Matt Strassler adds his take.]

It’s not going away any time soon. Leon Lederman and Chris Hill have a sequel to the original book coming out, Beyond the God Particle, due later this year. I’m sure the book will be great at explaining the physics, and I’m equally sure the title will generate a lot more confusion. Get your disclaimers ready!

What “The God Particle” Hath Wrought Read More »

95 Comments

Higgs Boson Blues

Almost enough to make me believe in a benevolent force guiding the universe: Nick Cave, on his new album Push the Sky Away, has a song called “Higgs Boson Blues.” (Hat tip to Ian Sample.)

Okay, don’t expect to hear a lot about spontaneous gauge symmetry breaking or giving mass to chiral fermions. But still:

Have you ever heard about the Higgs Boson blues
I’m goin’ down to Geneva baby, gonna teach it to you

Apparently Cave’s lyrics throughout the album came about from “Googling curiosities, being entranced by exotic Wikipedia entries ‘whether they’re true or not’.”

Higgs Boson Blues Read More »

5 Comments

Unblinding the Higgs

This new video has been bouncing around the blogs and Twitter feeds I read: excerpts from internal (i.e., non-public) talks at the CMS collaboration, as they revealed to themselves the new Higgs results from this summer. When you started hearing rumors last June, it was from these meetings that they emerged.

First we see two talks at internal collaboration meetings, by Mingming Yang on June 15 and by Andre David on June 28, then some of Joe Incandela’s public announcement on July 4 (along with Fabiola Gianotti’s talk about the ATLAS results, of course). In the first talk the significance was poking past four sigma, but not yet reaching five sigma, which took a bit more work (and data).

You might expect a lot of whooping and hollering on the part of the experimenters as they see how good their data is, but for the most part they are pretty quiet. It’s not because they don’t recognize the importance of the moment — it’s because their brains are working at full capacity, taking in the information on the slides and trying to understand exactly what it means.

The first talk is advertised as “unblinding,” when they first look at the results that they have intentionally hidden from themselves to prevent cheating. That seems like a tiny exaggeration, unless they’ve written a script that takes the data, turns it into a pretty plot, and uploads and captions that plot on a PowerPoint slide without any human being seeing it. (I suppose it’s possible…) But this is when most of the collaboration first heard the news, which is an historic moment by any measure.

Unblinding the Higgs Read More »

5 Comments
Scroll to Top