1 More on the Bloch Sphere (10 points)

In class, we learned to parametrize any pure, qubit state \(|\Psi\rangle \in \mathcal{H} = \mathbb{C}^2 \) in the “standard” basis \(\{|0\rangle, |1\rangle\} \) as follows:

\[
|\Psi\rangle = e^{i\gamma} \left(\cos \left(\frac{\theta}{2} \right) |0\rangle + e^{i\phi} \sin \left(\frac{\theta}{2} \right) |1\rangle \right),
\]

where \(\gamma \) is an overall (and irrelevant) phase and the angles \(\theta \) and \(\phi \) label points on the Bloch Sphere with \(0 \leq \theta \leq \pi \) and \(0 \leq \phi \leq 2\pi \).

(a.) Consider a state \(|\Psi\rangle \) parametrized by angles \((\theta, \phi) \) and the state \(|\tilde{\Psi}\rangle \) geometrically opposite to \(|\Psi\rangle \) on the Bloch sphere. Show that the states \(|\Psi\rangle \) and \(|\tilde{\Psi}\rangle \) are orthogonal. [3 points]

(b.) Any \(2 \times 2 \) unitary operator \(\hat{U} \) can be written in the form,

\[
\hat{U} = \exp \left(i \left[\alpha \hat{I} + \beta \vec{u} \cdot \hat{\sigma} \right] \right),
\]

where \(\alpha \) and \(\beta \) are real constants, \(\hat{I} \) is the \(2 \times 2 \) identity matrix, \(\hat{\sigma} = \{\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z\} \) are the Pauli matrices, and \(\vec{u} \) is a unit vector \((u_x^2 + u_y^2 + u_z^2 = 1) \). (Note that the expression in square brackets is a general Hermitian matrix.) Meanwhile a \(2 \times 2 \) density operator \(\hat{\rho} \) can be written in the Bloch form

\[
\hat{\rho} = \frac{1}{2} \left(\hat{I} + \vec{a} \cdot \hat{\sigma} \right),
\]

where \(\vec{a} \) is the Bloch vector. Show that the transformation of \(\hat{\rho} \) under \(\hat{U} \) given by \(\hat{U} \hat{\rho} \hat{U}^\dagger \) corresponds to a rotation of the Bloch vector through an angle \(2\beta \) about the axis \(\vec{u} \). [4 points]

(c.) Compute the operator product \((\vec{u} \cdot \hat{\sigma})(\vec{v} \cdot \hat{\sigma}) \), where \(\vec{u} \equiv (u_x, u_y, u_z) \) and \(\vec{v} \equiv (v_x, v_y, v_z) \) are (not necessarily unit) vectors. (Try simplifying the result to involve scalar and vector products of \(\vec{u} \) and \(\vec{v} \).) Using this result and your result from (b.), find an expression for \(\hat{\rho}^2 \). [3 points]

2 Purity! (5 points)

A common and popular measure of how mixed a state is, is the so-called Purity measure, which is defined for a state \(\hat{\rho} \) as,

\[
Purity(\hat{\rho}) = \text{Tr} (\hat{\rho}^2)
\]

(a.) Show that a pure state \(\hat{\rho}_{\text{pure}} \) is idempotent \((\hat{\rho}^2 = \hat{\rho}) \) and hence, find the purity of such a pure state. [1 point]

(b.) The value found above in (a.) is the maximum possible value of purity attainable for a state. What is the minimum value and what is the corresponding density operator? For
concreteness, work in a d-dimensional Hilbert space \mathcal{H}. \[2 \text{ points}\]

(c.) Let’s return to the expression for a qubit density operator from problem (1) and its square found in part (c.). Calculate the purity of this state as a function of the length of the Bloch vector, and show that $\vec{a} \cdot \vec{a} = 1$ if and only if the state is pure. \[2 \text{ points}\]

3 One Entangled Evening...spent doing Homework (10 points)

Consider a bipartite split of Hilbert space \mathcal{H} into subsystems \mathcal{A} and \mathcal{B} i.e. $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ and a (pure) normalized state $|\Psi\rangle \in \mathcal{H}$. Such a state can always be written in the Schmidt decomposition,

$$|\Psi\rangle = \sum_n a_n |\sigma_n\rangle_A \otimes |\lambda_n\rangle_B ,$$

where the states $\{ |\sigma_n\rangle\}$ and $\{ |\lambda_n\rangle\}$ are orthonormal states for \mathcal{A} and \mathcal{B}, respectively. (In class we wrote $|\sigma_n\rangle = |\sigma(A)_n\rangle$ and $|\lambda_n\rangle = |\sigma(B)_n\rangle$, but this notation is slightly more compact.)

(a.) A simple quantification of the degree of entanglement between subsystems \mathcal{A} and \mathcal{B} can be done by the quantity κ defined as,

$$\kappa = \frac{1}{\sum_n |a_n|^4} .$$

Specialize to the case of $\dim(\mathcal{A}) = \dim(\mathcal{B}) = d$. Find the maximum and minimum values of κ and show that the minimum value occurs only if the state is unentangled. \[3 \text{ points}\]

(b.) Using κ as the measure (higher the κ, more entangled the state), show that the Bell states are maximally entangled. \[4 \text{ points}\]

(c.) Consider three qubits, with Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 .$$

A popular state employed and discussed in Quantum Computation and Quantum Information circles is the so-called Werner or W- state given by,

$$|W\rangle = \alpha |001\rangle + \beta |010\rangle + \gamma |100\rangle ,$$

where α, β and γ are probability amplitudes, none of which is zero. Compute the reduced density matrices for qubit A and calculate its von Neumann entanglement entropy. \[3 \text{ points}\]