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—————————————————————————————————————–

1 The Mach-Zehnder Interferometer [9 Points]

In the discussion of interference in textbooks, one typically considers the nature of the interfer-
ence pattern when one does or does not learn about the path information. In this problem, we
will consider a scenario wherein one can acquire partial path information. We will consider two
cases: one wherein the experimenter acquires the path information, and the other wherein this
information is encoded in the environment, but is not available to the experimenter.
A stripped-down version of the double-slit experiment is the Mach-Zehnder interferometer,
shown in Figure 1.

Figure 1: A Mach-Zehnder Interferometer

Photons are made to enter the interferometer one at a time, so there is at most one photon
in the apparatus at any time; the path degree of freedom forms a two-level system labelled by
|0〉 , |1〉. We will call this the ‘which-path’ basis. |0〉 indicates that the photon is travelling in
the upper arm of the interferometer, whereas |1〉 indicates that it is in the lower arm. The first
beamsplitter, BS1, splits the input path |0〉 into a coherent superposition of two paths within
the interferometer. A phase shifter placed in one of these paths allows the experimenter to
change the relative phase eiφ between |0〉 and |1〉 introduced between the arms of the inter-
ferometer, which are then recombined at a second beamsplitter BS2. Photons are detected by
photodetectors D0, D1 in the output arms. If the input and output arms are labelled as in the
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figure, the unitary Up describing each of the two (identical) beamsplitters and the unitary Up
describing the phase shifter are given by

Ub =
1√
2

(|0〉+ |1〉) 〈0|+ 1√
2

(|0〉 − |1〉) 〈1| (1)

Up = |0〉 〈0|+ eiφ |1〉 〈1| . (2)

The photodetectors make a measurement of how the photon exited the interferometer, and
they measurement they perform are described by the PVM {|0〉 〈0| , |1〉 〈1|}. You should be able
to convince yourself that for input in just one arm, corresponding to the input state |0〉, the
probabilities of detection at D0, D1 respectively are given by

P (D0) =
1

2
(1 + cosφ) (3)

P (D1) =
1

2
(1− cosφ). (4)

In an ideal interference experiment, the internal paths recombine coherently at BS2, and by
choosing the phase appropriately, the experimenter can vary from total destructive to total con-
structive interference in a given output arm. This is what we see in the above equations. Note
that the combination of the second beamsplitter plus detectors yields an effective measurement
on the photon in the region between the beamsplitters (say, just before it reaches BS2) in a
basis |+〉 = { 1√

2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉− |1〉)}. That is, we can lump BS2 and the photodetec-

tors into a single device, which measures the PVM {|+〉 〈+| , |−〉 〈−|} inside the interferometer
(after the photon has gone through the phase shifter, if it took the lower path). This basis
is complementary to the basis containing path information. Decoherence in the ‘which-path’
(|0〉 and |1〉) basis has observable effects in the measurement statistics in this complementary
basis. If the contributions from different internal paths become partially or fully incoherent, the
visibility of the interference fringes (which is seen by doing repeated experiments and comparing
the frequency of D0 clicks vs D1 clicks) is reduced, or the interference disappears altogether.

Now suppose we introduce a probe system that ‘learns’ partial path information in the
following way. The probe interacts with the photon if it travels down path 1 (after the phase
shifter). We treat the probe also as a quantum system, initially in a pure state |P0〉. As a
result of the interaction between the photon and the probe, by the time the photon reaches
BS2, the probe either remains in state |P0〉 (if the photon was going down path 0) or has
evolved into state |P1〉 (if the photon was going down path 1). We can describe this coupling
via an interaction unitary acting after BS1 and the phase shifter as follows:

U = (|0〉 〈0|)S ⊗ IP + (|1〉 〈1|)S ⊗ (|P1〉 〈P0|+ |P⊥1 〉 〈P0|⊥)P (5)

where |P⊥0 〉, |P⊥1 〉 are states orthogonal to |P0〉, |P1〉 respectively, and we use the labels S, P to
refer to the photon path system and probe, respectively, when it is not clear from the context
to which system we are referring.

(a.) [2 Points] We first consider the case where the experimenter does not measure the en-
vironment. The interaction with the environment, even if the experimenter does not access
it, causes a change in the measurement probabilities and the visibility of interference that one
would see by changing φ. Assume input state |0〉S to the interferometer, as before. What is the
state (i.e. the reduced density operator) describing the photon path degree of freedom before
BS2? Write the state in the |0〉S , |1〉S basis, as a function of the overlap 〈P0|P1〉 of the probe
states; note the possibility for reduced coherence in this basis (the reduction of the off-diagonal
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elements of the density matrix) due – as we will argue below – to the partial path information
now contained in the environment.

Solution: We start with the initial state |0〉S |P0〉P on the joint system of the photon (S)
and the probe (P ). After going through BS1, the state is

(Ub ⊗ I) |0〉S |P0〉P = |+〉S |P0〉P (6)

=
1√
2

(|0〉S |P0〉P + |1〉s |P0〉P ) (7)

and after the phase shifter we have

(Up ⊗ I)
1√
2

(|0〉S |P0〉P + |1〉s |P0〉P ) =
1√
2

(|0〉S |P0〉P + eiφ |1〉s |P0〉P ) (8)

and finally after interacting with the probe via U , we have the state |ψ〉,

|ψ〉 =
1√
2

(|0〉S |P0〉P + eiφ |1〉S |P1〉P ). (9)

Note that whereas the state before U was factorable (the state on the photon system is just
1√
2
(|0〉S + eiφ |1〉s)), the state after is entangled unless |P1〉P = |P0〉P up to some phase. Thus,

in general, the state on S will be mixed and need to be calculated as a reduced density matrix.
The density matrix of the photon and probe together is

ρSP = |ψ〉 〈ψ| (10)

and we find the state on S by taking the partial trace over the probe system:

ρS = Tr P (|ψ〉 〈ψ|) (11)

= Tr P

(
1

2
(|0〉S |P0〉P + eiφ |1〉S |P1〉P )(〈0|S 〈P0|P + e−iφ 〈1|S 〈P1|P )

)
(12)

=
1

2
Tr P (|0〉S |P0〉P 〈0|S 〈P0|P + eiφ |1〉S |P1〉P 〈0|S 〈P0|P (13)

+ e−iφ |0〉S |P0〉P 〈1|S 〈P1|P + |1〉S |P1〉P 〈1|S 〈P1|P ) (14)

=
1

2
(Tr P (|0〉S |P0〉P 〈0|S 〈P0|P ) + eiφTr P (|1〉S |P1〉P 〈0|S 〈P0|P ) (15)

+ e−iφTr P (|0〉S |P0〉P 〈1|S 〈P1|P ) + Tr P (|1〉S |P1〉P 〈1|S 〈P1|P )). (16)

Now, note that performing a partial trace over P requires choosing an orthonormal basis for P ,
which {|P0〉 , |P1〉} is not. However, {|P0〉 , |P⊥0 〉} and {|P1〉 , |P⊥1 〉} are. Using the first basis to
perform the first partial trace, and the second basis to perform the last partial trace yields

Tr P (|0〉S |P0〉P 〈0|S 〈P0|P ) = |0〉 〈0|S (17)

Tr P (|1〉S |P1〉P 〈1|S 〈P1|P ) = |1〉 〈1|S (18)

(19)

and for the middle two partial traces, using either basis will yield the following results

Tr P (|1〉S |P1〉P 〈0|S 〈P0|P ) = 〈P0|P1〉 |1〉 〈0|S (20)

Tr P (|0〉S |P0〉P 〈1|S 〈P1|P ) = 〈P0|P1〉∗ |0〉 〈1|S . (21)
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Thus our reduced density matrix on the photon system S is

ρS =
1

2

(
|0〉 〈0|S + |1〉 〈1|S + eiφ〈P0|P1〉 |1〉 〈0|S + e−iφ〈P0|P1〉∗ |0〉 〈1|S

)
(22)

=
1

2

(
1 e−iφ〈P0|P1〉∗

eiφ〈P0|P1〉 1

)
. (23)

Now, let’s make a few conceptual points about the result: suppose that we had |P0〉 = c |P1〉
where c is some magnitude-one complex number (that is, the probe states are co-linear). Then
the the reduced state is ρS = 1

2

(
|0〉 〈0|S + |1〉 〈1|S + ceiφ〈P0|P1〉 |1〉 〈0|S + c∗e−iφ〈P0|P1〉∗ |0〉 〈1|S

)
,

which actually a pure state: ρS = 1√
2

(
|0〉+ ceiφ |1〉

)
1√
2

(
〈0|+ c∗e−iφ 〈1|

)
. So, in this case, the

state of the photon is a pure quantum state which is a coherent quantum superposition be-
tween having taken the upper path of the interferometer |0〉 and having taken the lower path
of the interferometer |1〉 and picking up the relative phase ceiφ. But, if we now start varying
|P0〉 so that it’s no longer co-linear to |P1〉, as they become closer and closer to orthogonal,
the magnitue of the offdiagonal entries, |〈P0|P1〉|, gets closer and closer to zero (and is zero in
the orthogonal limit). If |〈P0|P1〉| is less than 1, the state on the photon system S is no longer
pure, which means that there’s some basis in which the reduced density matrix will be diagonal,
and there will be more than one non-zero diagonal element, indicating that the state is now a
statistical mixture of different orthogonal pure states with different probabilities. As |〈P0|P1〉|
shrinks, this probability distribution will become noisier and noisier, until we reach the limit of
|〈P0|P1〉| = 0, in which case the density matrix is

ρS =

(
1
2 0
0 1

2

)
=

1

2
|0〉 〈0|+ 1

2
|1〉 〈1| . (24)

which is the maximally mixed state, a 50/50 statistical mixture, which tells you that the system
is either the pure state |0〉 〈0| or the distinct orthogonal pure state |1〉 〈1|, with equal probabil-
ities. This is conceptually completely different than a quantum superposition of the two pure
states of the form 1√

2
(|0〉 + |1〉), which is its own distinct pure quantum state. Notice that as

|〈P0|P1〉| shrinks, there is less and less dependence of the reduced density matrix on the relative
phase eiφ. When the reduced density matrix is pure, we can observe this relative phase by doing
an interference experiment, which is what we explore in the next problem. We will see that our
ability to observe interference between the |0〉 and |1〉 parts of the quantum state in coherent
superposition reduces as the photon system becomes more entangled with the probe system.
This is because of the phenomenon of decoherence as discussed in lecture.

(b.) [1 Point] Find the probability of getting a click in detector D0, as a function of φ and
the overlap 〈P0|P1〉. This causes visibility of interference to be reduced (as seen in the next
problem).

Solution: We know that the state of the photon interacting with BS2 (unitary Ub) and then the
detectors (which measure PVM {|0〉 〈0| , |1〉 〈1|}) is equivalent to simply performing the PVM
{|+〉 〈+| , |−〉 〈−|} on the state of the photon system just before BS2 (indeed, observe that

Ub |0〉 〈0|U †b = |+〉 〈+| and Ub |1〉 〈1|U †b = |−〉 〈−|). So, performing this measurement, we can
calculate the measurement probabilities via the Born rule:

Pr (D0) = Pr (+) = Tr (|+〉 〈+| ρS) (25)

= Tr

(
|+〉 〈+| 1

2

(
|0〉 〈0|S + |1〉 〈1|S + eiφ〈P0|P1〉 |1〉 〈0|S + e−iφ〈P0|P1〉∗ |0〉 〈1|S

))
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=
1

2

(
〈0|+〉〈+|0〉+ eiφ〈P0|P1〉〈0|+〉〈+|1〉+ e−iφ〈P0|P1〉∗〈1|+〉〈+|0〉+ 〈1|+〉〈+|1〉

)
=

1

2

(
1

2
+

1

2
(eiφ〈P0|P1〉+ e−iφ〈P0|P1〉∗) +

1

2

)
(26)

=
1

2

(
1 + Re(eiφ〈P0|P1〉)

)
. (27)

A similar calculation gives

Pr (D1) = Pr (−) =
1

2

(
1− Re(eiφ〈P0|P1〉)

)
. (28)

The probabilities of either detector clicking depend on φ, the relative phase that the photon
picks up if it travels down the lower arm of the interferometer. This combination of BS2 and the
detectors (which abstractly is equivalent to the PVM {|+〉 〈+| , |−〉 〈−|} being measured on the
photon state inside the interferometer) allows to observe quantum interference between the two
possible paths the photon takes in quantum superposition. Let’s see exactly why, by considering
the case where there’s no probe, or 〈P0|P1〉 = 1. Then the probabilities are Pr (D0) = 1

2(1 +
cosφ) and Pr (D1) = 1

2(1−cosφ), which can be tuned to be any two complementary probabilities
we want by changing φ appropriately. What’s the quantum mechanical mechanism for this?
Before BS2, the photon state is in quantum superposition of the two paths 1√

2
(|0〉 + eiφ |1〉)

where if we measured which path it took without having BS2 in the system, we would just
get that with 50 percent probability it took the upper path and 50 percent probability the
lower path. There’s no observable effect of the relative phase φ between the two parts of the
superposition. However, the role of BS2 is to actually show that there is a measurable physical
effect to the relative phase in the quantum superposition: it turns 1√

2
(|0〉+ eiφ |1〉) into

1√
2

(|+〉+ eiφ |−〉) =
1√
2

(
1√
2

(|0〉+ |1〉) + eiφ
1√
2

(|0〉 − |1〉)) =
1√
2

((1 + eiφ) |0〉+ (1− eiφ) |1〉)(29)

so, now adjusting φ adjusts the relative probability amplitudes for the |1〉 path and the |0〉 path.
The second beam splitter BS2 is causing the two parts of the quantum state which represent
the two paths in the interferometer to interfere constructively or destructively, depending on φ.
This is a hallmark quantum phenomenon that is not seen in classical systems!

(c.) [3 Points] Above, we were considering the case where the experimenter directly measures
the internal system of the interferometer (where the photon is in some quantum superposition of
travelling down either path), with the PVM {|+〉 〈+| , |−〉 〈−|} in order to observe interference
between the two paths which can be modulated by changing φ. Now consider the case in which
the experimenter measures the probe system while the photon is in the interferometer (after
interacting with the probe, but before reaching BS2) in order to try and infer what path of
the interferometer the photon is in (the goal of this measurement is NOT to observe interfer-
ence, as in the previous part). Since we are not concerned with interference in this part, and
all measurements are occuring before the photon hits BS2, you can pretend that BS2 and the
photodetectors do not exist in this part of the problem. It is useful to introduce an orthonormal
basis |0〉P , |1〉P for the probe system, such that the probe states may be written

|P0〉 = cos θ |0〉P + sin θ |1〉P (30)

|P1〉 = cos θ |0〉P − sin θ |1〉P (31)

where 2θ is the real angle parameterizing the overlap between the probe states: 〈P0|P1〉 =
cos(2θ). It may be shown (although you are not being asked to) that the measurement which
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optimally discriminates between the non-orthogonal probe states, in the sense of minimiz-
ing the error in guessing the state, is then a measurement in the |±〉P = 1√

2
(|0〉P ± |1〉P )

basis. If the experimenter does measure the probe with this optimal measurement, he ac-
quires information about the which-way observable (which branch of the interferometer the
photon is in). How much information is gained may be quantified in terms of his probability
of successfully predicting which path the photon is actually in, based on his probe measure-
ment results. The experimenter’s measurement on the probe system is described by the PVM
{Q0 = |+〉 〈+|P , Q1 = |−〉 〈−|P }, where outcome i is taken to imply the corresponding outcome
i in a which-way measurement. Show that the experimentalist’s total probability of success in
inferring the path the photon took based on the probe measurement readout is 1

2(1 + sin(2θ)).
This shows that as the probe states become closer to orthogonal, the experimentalist can be-
come near certain of which path the photon takes in the interferometer (and thus acquiring
more information about this observable via the probe).

Solution: Now, instead of trying to observe interference between the paths of the interferometer
as in the above, we are going to do a measurement of the probe while the photon is inside the
interferometer (before hitting BS2) and use its result to infer what branch of the interferometer
we would find the photon in if we measured it directly (that measurement would just be the
PVM {|0〉 〈0| , |1〉 〈1|} on the internal photon state, no BS2). The joint state of the photon and
probe system S⊗P before BS2 is 1√

2

(
|0〉 |P0〉+ eiφ |1〉 |P1〉

)
. This is a pure state, and we’re go-

ing to measure a PVM {IS⊗|+〉 〈+|P , IS⊗|−〉 〈−|P }. If we get measurement outcome + on the
probe, we will assume that if we measured which branch of the interferometer the photon is in,
we would definitely get |0〉, and for outcome − then branch |1〉. But we won’t always be right.
The actual post-measurement state will end up being a pure product state which will generally
be some superposition of |0〉 and |1〉 for the photon system, and just the state corresponding
to the measurement outcome |±〉 on the probe system. If we wanted to know the probabilities
with which our inference of the photon path is correct, we could measure the probabilities of
measuring 0 or 1 on the photon system after getting + or − on the probe system, respectively.
Since the PVM {IS⊗|+〉 〈+|P , IS⊗|−〉 〈−|P } on the probe and PVM {|0〉 〈0|S⊗IP , |1〉 〈1|S⊗IP }
on the photon path commute, it doesn’t matter which order they’re measure in, and can thus
be combined into a single joint PVM on the joint system for the purpose of calculating measure-
ment statistics. So, we’ll calculate the probabilities of getting the outcomes (0,+) and (1,−)
for the PVM {|0〉 〈0|S ⊗ |+〉 〈+|P , |0〉 〈0|S ⊗ |−〉 〈−|P , |1〉 〈1|S ⊗ |+〉 〈+|P , |1〉 〈1|S ⊗ |−〉 〈−|P }.
Since we’re now measuring a PVM on a pure state, we can just compute the overlaps to get the
probabilities. To do the calculation, it will be useful to observe that 〈P0|±〉 = 1√

2
(cos θ± sin θ),

and 〈P1|±〉 = 1√
2
(cos θ ∓ sin θ). The probability that we measure + on the probe and are able

to correctly infer that the photon is in the 0 branch is

Pr (0,+) = | 〈0| 〈+| 1√
2

(
|0〉 |P0〉+ eiφ |1〉 |P1〉

)
|2 (32)

=
1

2
|〈+|P0〉|2 (33)

=
1

4
(cos θ + sin θ)2 (34)

=
1

4
(1 + sin(2θ)). (35)

By a nearly identical calculation, the probability of getting measurement outcome − on the
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probe and correctly inferring that the photon is in the 1 branch is

Pr (1,−) =
1

4
(1 + sin(2θ)). (36)

Thus the total probability of success in the task of using a measurement on the probe to guess
which branch of the interferometer the photon took is Pr (0,+) + Pr (1,−) = 1

2(1 + sin(2θ)).
What is the significance of this result? Well, looking back at our results from problem b and
using the θ parameterization of the probe states, we see that the probabilities of each detector
firing in an interference experiment (where there is a probe present, but it isn’t measured by
the experimentalist) are

Pr (D0) =
1

2
(1 + cos(2θ) cosφ) (37)

Pr (D1) =
1

2
(1− cos(2θ) cosφ) . (38)

If cos(2θ) is not equal to 1 or −1 (i.e. if the probe states are not co-linear), then the effect that
changing φ has on the outcome probabilities in the interference experiment is diminished, and
as the probe states become more and more orthogonal, the two probabilities become closer and
closer to 1/2 and changes to them by changing φ become harder and harder to measure. So,
as the probe states are becoming more orthogonal, the observability of quantum interference in
the interference experiment diminishes until changing φ has absolutely no effect at all (i.e. there
is no longer any interference between the branches of the interferometer)! Why is this?? Well,
the suggestion that we’re making here is this. You calculated that if you measured the probe,
you would be able to correctly guess where the photon is in the interferometer with probability
1
2(1 + sin(2θ)). As the probe states become more and more orthogonal, this probability tends
to 1. That means as the probe states become more and more orthogonal, more and more exact
information about where the photon is in the interferometer exists in the probe system (and
could in principle be extracted if the experimentalist measured the probe properly). So what
we’re seeing is that as more and more information about where the photon is exists in the probe,
the less we are able to demonstrate the quantum phenomenon of interference between to the
two branches of the interferometer! As we saw in part a, the interaction of the photon with
the probe decoheres the state of the photon, and in the orthogonal probe state limit, the state
of the photon in the interferometer is no longer in a coherent quantum superposition, but a
classical probabilistic mixed state. So, we’re seeing that decoherence corresponds directly to a
loss of quantum phenomena, hence our system behaves less quantumly and more classically as
it decoheres!!

(d.) [3 Points] The combination of interaction with the probe, followed by measurement of
the probe, as we have seen previously, can be described as a measurement on the photon path
system alone (much in the same way as was done in problem 1a of homework 3). Find the
1-parameter family of POVMs (parameterized by θ) describing the effective measurement on
the system. Comment on the limits where |P0〉 and |P1〉 are (i.) co-linear, (ii.) orthogonal.

Solution: We can think of this setup as being a von Neumann measurement setup, where
what we would like to do is measure which path the photon is in (that is, just before BS2),
and instead of doing this measurement directly on the photon system, we will instead intro-
duce a measurement apparatus (the probe in initial state |P0〉), entangle it with the system
of interest (with interaction unitary U as given in the problem), and then perform a PVM
on the measurement apparatus (probe) in order to get information about what is going on in
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the photon system. As we know, and saw on the last homework, this indirect von Neumann
measurement (which we explored in the previous part of the problem) can also be modelled as
a direct POVM measurement on the photon system. The way we do that is by realizing (as in
the last homework) that a POVM on system S with POVM elements

E+ = Tr P

(
IS ⊗ |P0〉 〈P0|U †IS ⊗ |+〉 〈+|U

)
(39)

E− = Tr P

(
IS ⊗ |P0〉 〈P0|U †IS ⊗ |−〉 〈−|U

)
(40)

obtains the same measurement statistics as the indirect von Neumann measurement on the
probe. Plugging in all of the expressions and taking the traces, making use of the inner products
〈P0|±〉 = 1√

2
(cos θ ± sin θ), and 〈P1|±〉 = 1√

2
(cos θ ∓ sin θ), one finds that

E+ =
1 + sin(2θ)

2
|0〉 〈0|+ 1− sin(2θ)

2
|1〉 〈1| (41)

E− =
1− sin(2θ)

2
|0〉 〈0|+ 1 + sin(2θ)

2
|1〉 〈1| . (42)

This confirms what we already calculated in the previous part of the problem: if we got outcome
+ for this POVM (which corresponds to having gotten outcome + for the probe measurement),

the photon path state would collapse to |0〉 with probability 1+sin(2θ)
2 and if we got outcome

− for this POVM the photon path state would collapse to |1〉 with probability 1+sin(2θ)
2 . The

1−sin(2θ)
2 coefficients are the complementary probabilities for the failure cases of the inferrence

process discussed in part c. In the limit that the probe states are co-linear (θ = 0), the POVM
is actually the maximally mixed POVM

E+ =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = I

2
(43)

E− =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = I

2
(44)

which agrees with our understanding that if the probe states are colinear, then the probe doesn’t
get entangled with the photon system at all, and measuring the probe tells us absolutely nothing
about the photon system. Both outcomes are equally likely, and the photon system doesn’t
collapse or change after the measurement. On the other hand in the limit that the probe states
are orthogonal (θ = π/4), we actually obtain a PVM

E+ = |0〉 〈0| (45)

E− = |1〉 〈1| (46)

which agrees with our understanding that if the probe states are orthogonal, the probe becomes
maximally entangled with the photon system, and so measuring the probe system gives us per-
fect information about the photon path, as would a perfect PVM measurement {|0〉 〈0| , |1〉 〈1|}
directly on the photon system itself.

Here’s the punchline: in part (b.), you see that the mere presence of the probe, which isn’t
even being measured but the photon interacts with, changes the experimenter’s ability to ob-
serve interference between the paths of the interferometer (which he would do by measuring
{|+〉 〈+| , |−〉 〈−|} on the photon). As the probe states become closer to orthogonal, the ability of
changing φ to change the relative measurement probabilities decreases, hence the experimenter’s
ability to cause interference between the two different path possibilities in the interferometer
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is being reduced. In part (c.), we have seen that as the probe states |P0〉, |P1〉 become more
distinguishable (closer to orthogonal), the environment contains more information about the
which-way observable (in the sense that if the experimenter chooses to access to it by mea-
surement, they can predict outcomes of measurement of this observable correctly with higher
probability). So, we conclude that as the environment learns more information about some
basis of the system (even if the experimenter does not access it), the evolution of the system
changes from unitary, coherent evolution on the one hand, to decoherent evolution on the other.

2 The Quantum Eraser [11 Points]

The decoherence that a system experiences by virtue of its interaction with the environment
is often considered to be the explanation of the emergence of classicality for the system. For
instance, it is decoherence that ensures that orthogonal states of a pointer on an apparatus do
not interfere. Such decoherence is important for understanding how the collapse postulate for
measurements can be recovered when the apparatus is treated quantum mechanically, as is done
in the de Broglie-Bohm interpretation, dynamical collapse models and the Everett interpretation
(some of which you may hear about in the next few weeks).

In the previous problem, we saw that the amount of coherence a system exhibits relative to
some basis decreases as one increases the amount of information the environment has about that
basis. In this question, you will show that by measuring different observables on the environ-
ment, one can obtain information about different observables on the system. In particular, we
will reconsider the Mach-Zehnder interferometer experiment discussed in the previous problem.
We will see that when the photon and the probe become entangled, the probe can simulta-
neously carry information about the which-way observable and the complementary observable
(relative phase) of the photon, and that interference is recovered if one chooses to measure the
latter. This is known as the ‘quantum eraser’ experiment.

We will also consider the case wherein experimenters only have access to a small part of a
large environment and we will see that in this case, the loss of coherence for the system can
become effectively irreversible. In other words, we will express the condition for irreversibility
in terms of how information about the system is encoded in the environment.

Recall The Mach-Zehnder interferometer that you became acquainted with in problem 1.
After BS1 and the phase-shifter, the photon is in state 1√

2
(|0〉 + eiφ |1〉). A probe that starts

out in the state |P0〉 is, again, coupled to the photon via the unitary

U = (|0〉 〈0|)S ⊗ IP + (|1〉 〈1|)S ⊗ (|P1〉 〈P0|+ |P⊥1 〉 〈P0|⊥)P (47)

such that the state of the photon and probe after the interaction (but prior to BS2) is

|Ψ〉SP =
1√
2

(|0〉S |P0〉P + eiφ |1〉S |P1〉P ). (48)

We will again assume that the probe states have the same form as in problem 1 (c.) in terms
of the real parameter θ. We presume that after this interaction, the photon passes through
BS2 and we register which detector fires. The experiment is repeated a large number of times,
such that we obtain the relative frequency of the two detectors firing. As saw in the previous
problem, the probability for each outcome, as a function of the relative phase φ between the
arms of the intereferometer is

P (D0) =
1

2
(1 + Re(eiφ〈P0|P1〉)) =

1

2
(1 + 〈P0|P1〉 cosφ) (49)

9



P (D1) =
1

2
(1− Re(eiφ〈P0|P1〉)) =

1

2
(1− 〈P0|P1〉 cosφ). (50)

We define the fringe visibility V as

V =
Pmax − Pmin
Pmax + Pmin

, (51)

where Pmax = maxφP (D0), and similarly for Pmin. We see that the fringe visibility in the
presence of the probe system is given by

V = 〈P0|P1〉. (52)

We have the maximum value of fringe visibility (perfect interference) when 〈P0|P1〉 = 1 and no
fringe visibility (complete decoherence) when 〈P0|P1〉 = 0.

(a.) [1 Point] So far, we have considered the case where no infromation is acquired about
the probe. Now we consider performing a measurement on the probe, but rather than consider-
ing a measurement of the basis {|+〉P , |−〉P }, as was done in the previous problem, we consider
a measurement of the basis |0〉P , |1〉P . With what probability does each outcome occur in a
measurement of the state |ψ〉SP as defined above?

Solution: The probability of measuring 0 is

Pr (0) = Tr (|Ψ〉 〈Ψ|SP IS ⊗ |0〉 〈0|P ) (53)

=
1

2
(|〈P0|0〉|2 + |〈P1|0〉|2) (54)

= cos2 θ (55)

=
1

2
(1 + cos(2θ)) (56)

=
1

2
(1 + 〈P0|P1〉) (57)

and the probability of measuring 1 is

Pr (1) = Tr (|Ψ〉 〈Ψ|SP IS ⊗ |1〉 〈1|P ) (58)

=
1

2
(|〈P0|1〉|2 + |〈P1|1〉|2) (59)

= sin2 θ (60)

=
1

2
(1− cos(2θ)) (61)

=
1

2
(1− 〈P0|P1〉). (62)

(b.) [1 Point] For each outcome of this measurement, what state should be assigned to the
photon path system after learning this outcome?

Solution: Here since we’re doing a projective measurement {IS ⊗ |0〉 〈0|P , IS ⊗ |1〉 〈1|P } on
a pure state |Ψ〉S P and we know the outcome probabilities, we can use the standard state
update rule. For outcome 0 we have

|Ψ〉 → 1√
Pr (0)

IS ⊗ |0〉 〈0|P |Ψ〉 (63)
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=
1

cos θ

1√
2

(
〈0|P0〉 |0〉S + eiφ〈0|P1〉 |1〉S

)
|0〉P (64)

=
1

cos θ

1√
2

(
cos θ |0〉S + eiφ cos θ |1〉S

)
|0〉P (65)

=
1√
2

(|0〉S + eiφ |1〉S) |0〉P (66)

= |Φ+〉 (67)

and a very similar calculation for outcome 1 yields

|Ψ〉 → 1√
2

(|0〉S − e
iφ |1〉S) |1〉P = |Φ−〉 . (68)

(c.) [2 Points] Determine the fringe visibility in each case.

Solution: Okay, so, just to recap what we’re doing: the beam has gone into the interferom-
eter, and interacted with the probe. In the previous problem, we saw that in general if we
ignore the probe, decoherence caused by the probe will cause us to lose the ability to see quan-
tum interference (aability measured by the quantity V = 〈P0|P1〉). What is also true (but I
didn’t ask you to show), is that if you do a probe measurement in the +/− basis as in prob-
lem 1, and then try to do an interference experiment using BS2 and the detectors afterwards,
you won’t see any interference: the +/− measurement collapses the state of the photon in the
interferometer to collapse to just |0〉 or just |1〉, with no sign of the phase φ, so there will be
no interference. Now we ask, what if we measure the probe in the basis |0〉 , |1〉 with the PVM
{|0〉 〈0| , |1〉 〈1|} and then try and do the interference experiment with BS2 and the detectors?
Will the situation be any different than if we measured the probe in +/− and tried it (which
would result in no interference)? Let’s find out!

If we got measurement outcome 0 on the probe, then the state of the system and probe is
|Φ+〉 = 1√

2
(|0〉S + eiφ |1〉S) |0〉P , so the state on just the photon system is actually a pure state

1√
2
(|0〉S + eiφ |1〉S)! Letting it hit BS2, we now have

Ub
1√
2

(|0〉S + eiφ |1〉S) =
1√
2

(|+〉S + eiφ |−〉S) (69)

=
1√
2

(
1√
2

(|0〉S + |1〉S) + eiφ
1√
2

(|0〉S − |1〉S)) (70)

=
1 + eiφ

2
|0〉S +

1− eiφ

2
|1〉S (71)

and we calculate Pr (D0) = 1+cosφ
2 . Thus V = 1, which is telling us that by adjusting φ we have

complete control over the measurement statistics of either detector, meaning we have regained
the ability to have perfect quantum interference!

Similarly, in the case that we got outcome 1 on the probe, then the state of the system and
probe is |Φ−〉 = 1√

2
(|0〉S − eiφ |1〉S) |1〉P , so the state on just the photon system is actually a

pure state 1√
2
(|0〉S − eiφ |1〉S)! Letting it hit BS2, we now have

Ub
1√
2

(|0〉S − e
iφ |1〉S) =

1√
2

(|+〉S − e
iφ |−〉S) (72)
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=
1√
2

(
1√
2

(|0〉S + |1〉S)− eiφ 1√
2

(|0〉S − |1〉S)) (73)

=
1− eiφ

2
|0〉S +

1 + eiφ

2
|1〉S (74)

and we calculate Pr (D0) = 1−cosφ
2 . Thus V = 1, which, again, is telling us that by adjusting φ

we have complete control over the measurement statistics of either detector, meaning we have
regained the ability to have perfect quantum interference!

The significance of the result is as follows: we saw in the previous problem that the fact of
the probe existing causes decoherence in our interferometer system. The mechanism is that
as the probe learns more and more information about the path the photon took, the quantum
state of the photon becomes less and less quantum. So we can imagine that information about
the photon is leaking from the photon system into the probe system, and the more that this
happens, the more the photon system decoheres. What we’ve shown here is that if we have
access to the probe, where the photon’s path information has gone, we can reverse this leakage
of information by making the appropriate measurement, which reverses the decoherence and
allows us to regain the quantum properties of the photon system (in this case quantum inter-
ference). Or another way to say it, is that making the |0〉 , |1〉 measurement on the probe erases
the information about the photon system from the probe, which is what allows us to regain
coherence in the photon system.

(d.) [1 Point] At this point, you should see that for each outcome of the measurement on
the probe, one recovers an interference pattern with maximum fringe visibility. Show that
if one averages these interference patterns with their relative probabilities, one recovers the
equations for P (D0) and P (D1) above, the interference pattern in the case where the probe is
ignored.

Solution: Now, what we’re doing can be conceptually interpreted as having a measurement
in the 0/1 basis being done on the probe, but not looking at the outcome. We now want to see
what Pr (D0) would be in an interference experiment where this happens. Using the laws of
conditional probability, we see that

Pr (D0) = Pr (0)Pr (D0|0) + Pr (1)Pr (D0|1) (75)

=
1 + cos(2θ)

2

1 + cosφ

2
+

1− cos(2θ)

2

1− cosφ

2
(76)

=
1 + cos(2θ) cosφ

2
(77)

so this has the effect of basically ignoring the probe altogether, which is what we did in problem
1b, which is why the probabilities match.

You have now shown that an appropriate measurement on the probe allows one to recover
the coherence in the system even in the limit where 〈P0|P1〉 = 0.

The quantum eraser experiment shows that a system which has lost coherence relative to some
basis may nonetheless be ‘recohered’ (and the which-way information effectively ‘erased’ from
the environment) if one implements the appropriate measurement on the environment. Now,
you will explore some constraints on an experimenters access to the environment under which
such recoherence becomes impossible.
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We consider the same experimental set-up as the quantum eraser experiment, but where there
are now n distinct probes, each of which successively couples to the system by the unitary
described above, leaving the composite of system and probes in the final state

|Ψ〉 =
1√
2

(|0〉S |P0〉P1
... |P0〉Pn

+ eiφ |1〉S |P1〉P1
... |P1〉Pn

). (78)

Now, imagine an observer that has access to only one of these n probes. This might occur, for
instance, if the probes are photons that carry away information about the system to different
regions of space and our observer is localized in only one of these many regions. It is generically
the case for realistic environments, practical experiments typically have access to only a small
part of the overall environment that is being interacted with. Suppose, for definiteness, that our
experimenter has access to the nth probe. By symmetry, our conclusions will be independent
of this choice.

(e.) [3 Points] Imagine that the experimenter measures the basis {|+〉 , |−〉} on the nth probe.
The process of the nth probe becoming correlated with the photon (already part of an entangled
state with the other n-1 probes), followed by measurement of the probe by the experimenter
yields an effective measurement on the photon. What is the final state of the system after the
measurement, for each of the two outcomes? What information does the experimenter have
about the which-way observable of the photon, i.e. given the result of measurement of the nth
probe, with what probability can the experimenter correctly predict the result of a measure-
ment of this observable (if it were performed instead of the interference experiment)? Verify
that this yields just as much which-way information as if there were just a single probe particle
interacting with the system. We can therefore conclude that for the interaction considered here,
which-way information about the photon is redundantly encoded in the environment.

Solution: The probability of measuring + on the nth probe is

Pr (+) = Tr
(
|Ψ〉 〈Ψ| I ⊗ |+〉 〈+|pn

)
(79)

=
1

2
(|〈P0|+〉|2 + |〈P1|+〉|2) (80)

=
1

2

(
(cos θ + sin θ)2

2
+

(cos θ − sin θ)2

2

)
(81)

=
1

2
(82)

and therefore the prbability of measuring − on the nth probe is Pr (−) = 1
2 .

The state update rule tells us that for outcome +, the resultant state is

|Ψ〉 → |Φ+〉 =
1√

Pr (+)
I ⊗ |+〉 〈+|pn |Ψ〉 (83)

=
(
〈+|P0〉 |0〉S |P0〉p1 ... |P0〉pn−1

+ eiφ〈+|P1〉 |1〉S |P1〉p1 ... |P1〉pn−1

)
(84)

=
1√
2

(
(cos θ + sin θ) |0〉S |P0〉p1 ... |P0〉pn−1

+ eiφ(cos θ − sin θ) |1〉S |P1〉p1 ... |P1〉pn−1

)
|+〉pn

and similarly for outcome − the resultant state is

|Ψ〉 → |Φ−〉 =
1√
2

(
(cos θ − sin θ) |0〉S |P0〉p1 ... |P0〉pn−1

+ eiφ(cos θ + sin θ) |1〉S |P1〉p1 ... |P1〉pn−1

)
|−〉pn .
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Now, before calculating the reduced density matrices on S, let’s fix some notation to make it
cleaner. Let |0k〉 = |0〉S |P0〉p1 ... |P0〉pk−1

and |1k〉 = |1〉S |P1〉p1 ... |P1〉pk−1
. Then we can write

|Φ+〉 〈Φ+| =
1

2
((cos θ + sin θ)2 |0n〉 〈0n|+ (cos θ + sin θ)(cos θ − sin θ)(eiφ |1n〉 〈0n|+ e−iφ |0n〉 〈1n|)(85)

+(cos θ − sin θ)2 |1n〉 〈1n|)⊗ |+〉 〈+|pn (86)

=
1

2
((1 + sin(2θ)) |0n〉 〈0n|+ cos(2θ)(eiφ |1n〉 〈0n|+ e−iφ |0n〉 〈1n|) (87)

+(1− sin(2θ)) |1n〉 〈1n|)⊗ |+〉 〈+|pn . (88)

Also, observe the following:

Tr pk−1

(
|0k〉 〈0k|

)
= |0k−1〉 〈0k−1| (89)

Tr pk−1

(
|1k〉 〈1k|

)
= |1k−1〉 〈1k−1| (90)

Tr pk−1

(
|1k〉 〈0k|

)
= 〈P0|P1〉 |1k−1〉 〈0k−1| (91)

Tr pk−1

(
|0k〉 〈1k|

)
= 〈P0|P1〉∗ |0k−1〉 〈1k−1| . (92)

Now, to compute the reduced density matrix on S, we take the partial trace over systems p1
through pn iteratively, starting with pn and decreasing:

ρ+ = Tr p1...pn (|Φ+〉 〈Φ+|) (93)

= Tr p1...pn(
1

2
((1 + sin(2θ)) |0n〉 〈0n|+ cos(2θ)(eiφ |1n〉 〈0n|+ e−iφ |0n〉 〈1n|) (94)

+(1− sin(2θ)) |1n〉 〈1n|)⊗ |+〉 〈+|pn) (95)

= Tr p1...pn−1(
1

2
((1 + sin(2θ)) |0n〉 〈0n|+ cos(2θ)(eiφ |1n〉 〈0n|+ e−iφ |0n〉 〈1n|) (96)

+(1− sin(2θ)) |1n〉 〈1n|)) (97)

=
1

2
((1 + sin(2θ))Tr p1...pn−1 (|0n〉 〈0n|) + cos(2θ)(eiφTr p1...pn−1 (|1n〉 〈0n|) + e−iφTr p1...pn−1 (|0n〉 〈1n|))

+(1− sin(2θ))Tr p1...pn−1 (|1n〉 〈1n|)) (98)

Now, using our relations above, we can see that

Tr p1...pn−1 (|0n〉 〈0n|) = |0〉 〈0|S (99)

Tr p1...pn−1 (|1n〉 〈1n|) = |1〉 〈1|S (100)

Tr p1...pn−1 (|1n〉 〈0n|) = 〈P0|P1〉n−1 |1〉 〈0|S (101)

Tr p1...pn−1 (|0n〉 〈1n|) = 〈P0|P1〉∗(n−1) |0〉 〈1|S , (102)

so we finally have that

ρ+ =
1

2
((1 + sin(2θ)) |0〉 〈0|S + cos(2θ)

(
eiφ〈P0|P1〉n−1 |1〉 〈0|S + e−iφ〈P0|P1〉∗(n−1) |0〉 〈1|S

)
+(1− sin(2θ)) |1〉 〈1|S) (103)

=
1

2

(
1 + sin(2θ) e−iφ cos(2θ)〈P0|P1〉∗(n−1)

eiφ cos(2θ)〈P0|P1〉n−1 1− sin(2θ)

)
. (104)

Similarly, we find that for the − outcome, the reduced state on the photon system is

ρ− =
1

2

(
1− sin(2θ) e−iφ cos(2θ)〈P0|P1〉∗(n−1)

eiφ cos(2θ)〈P0|P1〉n−1 1 + sin(2θ)

)
. (105)
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Now, the probability of success is Pr (+)Pr (0|+) + Pr (−)Pr (1|−). To calculate this we need

Pr (0|+) = Tr (ρ+ |0〉 〈0|) =
1 + sin(2θ)

2
(106)

Pr (1|−) = Tr (ρ− |1〉 〈1|) =
1 + sin(2θ)

2
(107)

so we see that the probability of success is

Pr (+)Pr (0|+) + Pr (−)Pr (1|−) =
1

2

1 + sin(2θ)

2
+

1

2

1 + sin(2θ)

2
=

1 + sin(2θ)

2
, (108)

matching the results of problem 1c.

(f.) [2 Points] Now imagine that the experimenter measures the basis {|0〉 , |1〉} on the nth
probe. What is the final state of the system after the measurement, for each of the two out-
comes? Show that in this case, the fringe visibility of the interference pattern can be obtained
from the expression for the fringe visibility in the case where the probe is ignored by simply
replacing 〈P0|P1〉 with 〈P0|P1〉n−1.

Solution: The probability of measuring 0 is

Pr (0) = Tr
(
|Ψ〉 〈Ψ| I ⊗ |0〉 〈0|pn

)
(109)

=
1

2
(|〈P0|0〉|2 + |〈P1|0〉|2) (110)

= cos2 θ. (111)

The computation of the reduced density matrices proceeds in an identical fashion to the previous
part, except with different overlaps 〈i|Pi〉 instead of the 〈±|Pi〉 in the previous part. Replacing
everything appropriately, one finds that the reduced density matrices for outcome 0 is

ρ0 =
1

2

(
1 e−iφ〈P0|P1〉∗(n−1)

eiφ〈P0|P1〉n−1 1

)
. (112)

Since BS2 and the detectors together are equivalent to a +/− measurement on this state, we
find that

Pr (D0) = Pr (+) (113)

= Tr (|+〉 〈+| ρ0) (114)

= 〈+| ρ0 |+〉 (115)

=
1

2
(〈0|+ 〈1|)ρ0(|0〉+ |1〉) (116)

=
1

4

(
1 + eiφ〈P0|P1〉n−1 + e−iφ〈P0|P1〉∗(n−1) + 1

)
(117)

=
1

2
(1 + 〈P0|P1〉n−1 cosφ) (118)

Similarly, for outcome 1, we have reduced state

ρ1 =
1

2

(
1 −e−iφ〈P0|P1〉∗(n−1)

−eiφ〈P0|P1〉n−1 1

)
. (119)
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which gives

Pr (D0) =
1

2
(1− 〈P0|P1〉n−1 cosφ). (120)

In either case, the fringe visibility is now V = 〈P0|P1〉n−1.

(g.) [1 Point] Suppose 〈P0|P1〉 = 1 − ε where ε is much smaller than 1. In this case, how
large must n be before the fringe visibility becomes negligible? Suppose 〈P0|P1〉 = ε. How large
must n be before the fringe visibility becomes negligible?

Solution: The fringe visibility is V = 〈P0|P1〉n−1. If 〈P0|P1〉 = 1− ε, then

V = (1− ε)n−1 = 1− (n− 1)ε+
1

2
(n− 1)(n− 2)ε2 +O(ε3), (121)

and we require n = O(1ε ). For n − 1 = N
ε , we have V = (1 − ε)N/ε = e−N as ε → 0. For

〈P0|P1〉 = ε, V = εn−1, which is negligible for n ≥ 2.

If one tries to define ‘classical information’ about a system as information about which there
can be intersubjective agreement among many observers, then classical information is informa-
tion that can be redundantly encoded in the different parts of the environment of the system.
(This idea is called ‘quantum Darwinism’.) The which-way information in our example was of
this type. We have also seen that once the environment has achieved a redundant encoding
of information about some basis of the system, then it is in practice infeasible for an exper-
imenter who has access to only part of the environment to recover coherence for this basis.
—————————————————————————————————————–
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