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1 Bohmian Trajectories [12 points]

Consider the Bohmian mechanics of a spinless nonrelativistic particle in one dimension, with
mass m, position g, and potential V(zx), so that the Schrédinger and guidance equations are

2
z'gt\ll(ac,t) = [_2:7[71512 + V(:c)] U(z,t) (1)
% - %Im (Y;’) (0,1). ()

(a.) [2 Points] Show that the guidance equation can be written in the compact form
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where v = dq/dt is the particle velocity and J is a “current,” an expression for which you will
derive. (In more than one dimension the current would be a vector.)

Solution: From eq. (2) we have
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(b.) [3 Points] Show that the wave function and current satisfy a continuity equation,
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Argue (informally) that this implies that an initially equilibrium (distributed with respect to
|W|?) ensemble of particles will remain in equilibrium as it evolves.

Solution: Using our expression for J and the product rule, we have
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On the other hand, the Schrédinger equation eq. (1) gives us
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as desired. We may interpret this as follows: the time evolution %\Pf of the wavefunction is

completely dictated by the Schrédinger equation, while eq. (4) describes how the ensemble of
particle trajectories (with velocities given locally by v = J|¥|?) responds to this. Any local
increase or decrease in |¥|? is exactly compensated by a local outflow or inflow, respectively, of
particle density given by ‘g—i. Hence an ensemble of particles initially distributed according to

|¥|? remains so as it evolves.

(c.) [4 Points] Define the “dwell time” of a particle, (rq), to be the expectation value of
the amount of time the particle spends in a region  C R!. Using Bohmian trajectories, show
that this is given by

<TQ):/Zdt/de|\Il(ac,t)|2. (5)

(Hint: use the equilibrium condition for the distribution of Bohmian trajectories.) Use this to
give a hand-waving argument that Bohmian mechanics should reproduce the usual interference
phenomena of textbook quantum mechanics, such as the double-slit experiment.

Solution: For a single trajectory ¢(t), we can define an exact dwell time
oo
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where §(-) is the Dirac delta. To obtain the expectation value (1) we now perform an ensemble
average over the equilibrium distribution of ¢(t), which from part (b.) equals |¥(q(t),t)|*:
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as desired, where in the second line we used linearity of expectation. Thus in the Bohmian
picture, the average time that a single particle in an equilibrium ensemble spends in a region
) is proportional to the probability of its being found there according to conventional quantum
mechanics. So the two formulations should yield statistically identical experimental outcomes.

(d.) [3 Points] Consider a one-dimensional problem, and choose some single trajectory, Q(t),

that a Bohmian particle could have, with a mass and potential as above. Define the probability
that an actual particle is to the right of this fiducial trajectory by
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Show that this quantity is a constant over time. Argue that this implies (at least in one dimen-
sion) that Bohmian trajectories cannot cross each other.

Solution: Using the Leibniz integral rule we obtain
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as desired. In line 2 we used the definition of J, eq. (3), for the first term and the continuity equa-
tion eq. (4) for the second; in line 4 we used the fact that lim, o VU(z,t) = limy_oo J(2,1) =0
for physical wavefunctions V.

Now suppose for the sake of contradiction that two trajectories Q(t) and S(t) cross between
times ¢; and to: that is to say, Q(t1) < S(t1) but Q(t2) > S(t2). Then it follows by continuity
and the non-negativity of |W|? that Pg’?) (t1) > PI(;{S) (t1) while PI(%Q) (t2) < P](?S)(tz). But this
contradicts the constancy of both P}(%Q) (t) and P;%S) (t).



2 Getting to Know Quantum Circuits [8 Points]
(a.) [2 Points] A SWAP gate takes an input state of two unentangled qubits and swaps them:
SWAP : |z) @ [y) — |y) @ |z). (7)

It is generally portrayed thus:

Show how to construct a SWAP gate using only CNOT gates.

Solution: The following circuit does the trick:
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To see this, note that for z,y € 0, 1 the input state |z) |y) goes to |x) |y @ z) after the first CNOT,
then to [t ® (y D z)) lydx) = |y) |y ® x) after the second, and finally to |y) |[(y D x) ®y) =
ly) |z) after the third. Since this circuit is equivalent to the SWAP gate on a complete basis of
inputs, this holds for arbitrary inputs.

(b.) [2 Points] Consider the following quantum circuit, constructed from Hadamards and
CNOTs:

m
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Imagine we input an arbitrary qubit to the top register, and ancilla qubits |0) to the other two:

[Winput) = (|0) + 5]1)) @ |0) @ [0). (8)

Derive the general form of the output state |Woutput), and calculate the probability for each
possible outcome of measuring any of the final three qubits.

Solution: The input state |Winput) =  |000) + £]100) evolves as follows.

After H(2): 55(/000) + [010)) + Z5(100) + [110))
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3): 55(1000) +]011)) + 5 (|100) + [111))



After CNOT(1,2): 55(/000) +[011)) + Z5(|110) + [101))

After H(1): [Wouiput) = 2(/000) 4 [100) + [011) + [111)) + £(]010) — |110) + |001) — [101))

Each of the three qubits takes the value 0 in two terms with amplitude § and another two

terms with amplitude 8. likewise for the value 1. Thus for each qubit,
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(c.) [2 Points] A Fredkin gate, also known as a CSWAP (controlled-SWAP) gate, maps 3-
qubit states to 3-qubit states. Its action on basis states |zix2x3), where x; € {0,1}, is the
identity (|x1xox3) — |r12223)) except for

1101) — |110) (9)
1110) — |101). (10)

In other words, the second and third bits are swapped if the first is a 1, and left alone otherwise.

Consider the following circuit, constructed from Hadamards and a Fredkin gate.

H H A

Imagine that we feed |0) into the first register, and two identical qubits |¢)) into the second and
third:

[Winput) = [0) @ |1) @ |4). (11)
What are the probabilities of getting 0 and 1 for the measurement outcomes on the first output
qubit?

Solution: |Wi,,u) = |0) [¢) [¢) evolves as follows:

Atter H(1): —(10) + [1))[¢) [0)

After CSWAP(1,2,3): %(\m + (1)) |¥) |¢) since SWAP leaves the state |¢) [1)) unchanged
After the second H(1): |Woutput) = |0) [¥) |¥) = |Winput)

It follows that for the first qubit P(0) =1 and P(1) = 0.

(d.) [2 Points] Same circuit as in part (d.), but now input two orthogonal states into the
second and third registers:

[Winput) = [0) @ [9) @ [d)  (¢|¢) = 0. (12)



What are the probabilities for the measurement outcome of the first qubit now?
Solution: |Wiypu) = [0) [¢) |@) evolves as follows:

After H(1): 2510)[9)16) + 5 11) 1) |6)

After CSWAP(1,2,3): 5 0) [¢) [¢) + 5 [1) |9) [v))

After the second H(1): [Woutpue) = 5(10) [¥) [¢) + 1) [) [6) + |0} [6) [4) — [1) |9) [¥))

The four terms in this expression are all mutually orthogonal since (0|1) = (¢|¢) = 0, and

the first qubit appears twice as 0 and twice as 1, each with amplitude 3. Thus P(0) = P(1) =

2(3)7 - &




