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—————————————————————————————————————–

1 Bohmian Trajectories [12 points]

Consider the Bohmian mechanics of a spinless nonrelativistic particle in one dimension, with
mass m, position q, and potential V (x), so that the Schrödinger and guidance equations are

i
∂

∂t
Ψ(x, t) =

[
− 1

2m

∂2

∂x2
+ V (x)

]
Ψ(x, t) (1)

dq

dt
=

1

m
Im

(
∇Ψ

Ψ

)
(q, t). (2)

(a.) [2 Points] Show that the guidance equation can be written in the compact form

v =
J

|Ψ|2
, (3)

where v = dq/dt is the particle velocity and J is a “current,” an expression for which you will
derive. (In more than one dimension the current would be a vector.)

Solution: From eq. (2) we have

v =
1

2im

(
∇Ψ

Ψ
− ∇Ψ∗

Ψ∗

)
=

1

2im

(
Ψ∗∇Ψ−Ψ∇Ψ∗

|Ψ|2

)
from which it follows that

J =
1

2im

(
Ψ∗

∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
.

(b.) [3 Points] Show that the wave function and current satisfy a continuity equation,

∂

∂t
|Ψ(x, t)|2 +

∂

∂x
J(x, t) = 0. (4)

Argue (informally) that this implies that an initially equilibrium (distributed with respect to
|Ψ|2) ensemble of particles will remain in equilibrium as it evolves.

Solution: Using our expression for J and the product rule, we have

∂J

∂x
=

1

2im

(
∂Ψ∗

∂x

∂Ψ

∂x
+ Ψ∗

∂2Ψ

∂x2
− ∂Ψ

∂x

∂Ψ∗

∂x
−Ψ

∂2Ψ∗

∂x2

)
=

1

2im

(
Ψ∗

∂2Ψ

∂x2
−Ψ

∂2Ψ∗

∂x2

)
.
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On the other hand, the Schrödinger equation eq. (1) gives us

∂Ψ

∂t
= − 1

2mi

∂2Ψ

∂x2
− iVΨ ⇒ ∂Ψ∗

∂t
=

1

2mi

∂2Ψ∗

∂x2
+ iVΨ∗

from which we obtain the other term,

∂|Ψ|2

∂t
= Ψ∗

∂Ψ

∂t
+ Ψ

∂Ψ∗

∂t

= − 1

2mi
Ψ∗

∂2Ψ

∂x2
− iV |Ψ|2 +

1

2mi
Ψ
∂2Ψ∗

∂x2
+ iV |Ψ|2

=
1

2im

(
Ψ
∂2Ψ∗

∂x2
−Ψ∗

∂2Ψ

∂x2

)
= −∂J

∂x

as desired. We may interpret this as follows: the time evolution ∂|Ψ|2
∂t of the wavefunction is

completely dictated by the Schrödinger equation, while eq. (4) describes how the ensemble of
particle trajectories (with velocities given locally by v = J |Ψ|2) responds to this. Any local
increase or decrease in |Ψ|2 is exactly compensated by a local outflow or inflow, respectively, of
particle density given by ∂J

∂x . Hence an ensemble of particles initially distributed according to
|Ψ|2 remains so as it evolves.

(c.) [4 Points] Define the “dwell time” of a particle, 〈τΩ〉, to be the expectation value of
the amount of time the particle spends in a region Ω ⊂ R1. Using Bohmian trajectories, show
that this is given by

〈τΩ〉 =

∫ ∞
−∞

dt

∫
Ω
dx |Ψ(x, t)|2. (5)

(Hint: use the equilibrium condition for the distribution of Bohmian trajectories.) Use this to
give a hand-waving argument that Bohmian mechanics should reproduce the usual interference
phenomena of textbook quantum mechanics, such as the double-slit experiment.

Solution: For a single trajectory q(t), we can define an exact dwell time

τΩ =

∫ ∞
−∞

dt1(q(t) ∈ Ω)

in which we have introduced

1(q(t) ∈ Ω) =

{
1 if q(t) ∈ Ω

0 otherwise

=

∫
Ω
dx δ(x− q(t))
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where δ(·) is the Dirac delta. To obtain the expectation value 〈τΩ〉 we now perform an ensemble
average over the equilibrium distribution of q(t), which from part (b.) equals |Ψ(q(t), t)|2:

〈τΩ〉 =

〈∫ ∞
−∞

dt

∫
Ω
dx δ(x− q(t))

〉
=

∫ ∞
−∞

dt

∫
Ω
dx 〈δ(x− q(t))〉

=

∫ ∞
−∞

dt

∫
Ω
dx |Ψ(q(t), t)|2δ(x− q(t))

=

∫ ∞
−∞

dt

∫
Ω
dx |Ψ(x, t)|2

as desired, where in the second line we used linearity of expectation. Thus in the Bohmian
picture, the average time that a single particle in an equilibrium ensemble spends in a region
Ω is proportional to the probability of its being found there according to conventional quantum
mechanics. So the two formulations should yield statistically identical experimental outcomes.

(d.) [3 Points] Consider a one-dimensional problem, and choose some single trajectory, Q(t),
that a Bohmian particle could have, with a mass and potential as above. Define the probability
that an actual particle is to the right of this fiducial trajectory by

P
(Q)
R (t) =

∫ ∞
Q(t)

dx |Ψ(x, t)|2. (6)

Show that this quantity is a constant over time. Argue that this implies (at least in one dimen-
sion) that Bohmian trajectories cannot cross each other.

Solution: Using the Leibniz integral rule we obtain

d

dt
P

(Q)
R (t) = −|Ψ(Q(t), t)|2dQ

dt
+

∫ ∞
Q(t)

dx
∂

∂t
|Ψ(x, t)|2

= −J(Q(t), t)−
∫ ∞
Q(t)

dx
∂

∂t
J(x, t)

= −J(Q(t), t)− J(x, t)
∣∣∣∞
Q(t)

= −J(Q(t), t) + J(Q(t), t)

= 0

as desired. In line 2 we used the definition of J , eq. (3), for the first term and the continuity equa-
tion eq. (4) for the second; in line 4 we used the fact that limx→∞Ψ(x, t) = limx→∞ J(x, t) = 0
for physical wavefunctions Ψ.

Now suppose for the sake of contradiction that two trajectories Q(t) and S(t) cross between
times t1 and t2: that is to say, Q(t1) < S(t1) but Q(t2) > S(t2). Then it follows by continuity

and the non-negativity of |Ψ|2 that P
(Q)
R (t1) > P

(S)
R (t1) while P

(Q)
R (t2) < P

(S)
R (t2). But this

contradicts the constancy of both P
(Q)
R (t) and P

(S)
R (t).
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2 Getting to Know Quantum Circuits [8 Points]

(a.) [2 Points] A SWAP gate takes an input state of two unentangled qubits and swaps them:

SWAP : |x〉 ⊗ |y〉 → |y〉 ⊗ |x〉. (7)

It is generally portrayed thus:

Show how to construct a SWAP gate using only CNOT gates.

Solution: The following circuit does the trick:

|x〉 • ⊕ •

|y〉 ⊕ • ⊕

To see this, note that for x, y ∈ 0, 1 the input state |x〉 |y〉 goes to |x〉 |y ⊕ x〉 after the first CNOT,
then to |x⊕ (y ⊕ x)〉 |y ⊕ x〉 = |y〉 |y ⊕ x〉 after the second, and finally to |y〉 |(y ⊕ x)⊕ y〉 =
|y〉 |x〉 after the third. Since this circuit is equivalent to the SWAP gate on a complete basis of
inputs, this holds for arbitrary inputs.

(b.) [2 Points] Consider the following quantum circuit, constructed from Hadamards and
CNOTs:

H

H

Imagine we input an arbitrary qubit to the top register, and ancilla qubits |0〉 to the other two:

|Ψinput〉 = (α|0〉+ β|1〉)⊗ |0〉 ⊗ |0〉. (8)

Derive the general form of the output state |Ψoutput〉, and calculate the probability for each
possible outcome of measuring any of the final three qubits.

Solution: The input state |Ψinput〉 = α |000〉+ β |100〉 evolves as follows.

After H(2): α√
2
(|000〉+ |010〉) + β√

2
(|100〉+ |110〉)

After CNOT(2,3): α√
2
(|000〉+ |011〉) + β√

2
(|100〉+ |111〉)
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After CNOT(1,2): α√
2
(|000〉+ |011〉) + β√

2
(|110〉+ |101〉)

After H(1): |Ψoutput〉 = α
2 (|000〉+ |100〉+ |011〉+ |111〉) + β

2 (|010〉 − |110〉+ |001〉 − |101〉)

Each of the three qubits takes the value 0 in two terms with amplitude α
2 and another two

terms with amplitude β
2 ; likewise for the value 1. Thus for each qubit,

P (0) = P (1) = 2
∣∣∣α
2

∣∣∣2 + 2

∣∣∣∣β2
∣∣∣∣2 =

|α|2 + |β|2

2
=

1

2
.

(c.) [2 Points] A Fredkin gate, also known as a CSWAP (controlled-SWAP) gate, maps 3-
qubit states to 3-qubit states. Its action on basis states |x1x2x3〉, where xi ∈ {0, 1}, is the
identity (|x1x2x3〉 → |x1x2x3〉) except for

|101〉 → |110〉 (9)

|110〉 → |101〉. (10)

In other words, the second and third bits are swapped if the first is a 1, and left alone otherwise.

Consider the following circuit, constructed from Hadamards and a Fredkin gate.

H H

Imagine that we feed |0〉 into the first register, and two identical qubits |ψ〉 into the second and
third:

|Ψinput〉 = |0〉 ⊗ |ψ〉 ⊗ |ψ〉. (11)

What are the probabilities of getting 0 and 1 for the measurement outcomes on the first output
qubit?

Solution: |Ψinput〉 = |0〉 |ψ〉 |ψ〉 evolves as follows:

After H(1): 1√
2
(|0〉+ |1〉) |ψ〉 |ψ〉

After CSWAP(1,2,3): 1√
2
(|0〉+ |1〉) |ψ〉 |ψ〉 since SWAP leaves the state |ψ〉 |ψ〉 unchanged

After the second H(1): |Ψoutput〉 = |0〉 |ψ〉 |ψ〉 = |Ψinput〉

It follows that for the first qubit P (0) = 1 and P (1) = 0.

(d.) [2 Points] Same circuit as in part (d.), but now input two orthogonal states into the
second and third registers:

|Ψinput〉 = |0〉 ⊗ |ψ〉 ⊗ |φ〉 〈ψ|φ〉 = 0. (12)
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What are the probabilities for the measurement outcome of the first qubit now?

Solution: |Ψinput〉 = |0〉 |ψ〉 |φ〉 evolves as follows:

After H(1): 1√
2
|0〉 |ψ〉 |φ〉+ 1√

2
|1〉 |ψ〉 |φ〉

After CSWAP(1,2,3): 1√
2
|0〉 |ψ〉 |φ〉+ 1√

2
|1〉 |φ〉 |ψ〉

After the second H(1): |Ψoutput〉 = 1
2(|0〉 |ψ〉 |φ〉+ |1〉 |ψ〉 |φ〉+ |0〉 |φ〉 |ψ〉 − |1〉 |φ〉 |ψ〉)

The four terms in this expression are all mutually orthogonal since 〈0|1〉 = 〈ψ|φ〉 = 0, and
the first qubit appears twice as 0 and twice as 1, each with amplitude 1

2 . Thus P (0) = P (1) =

2
(

1
2

)2
= 1

2 .
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