1 Traces, Traces Everywhere (5 points)

(a.) Okay, so the time evolved state is given by,

$$\hat{\rho}(t) = \hat{U}(t)\hat{\rho}(0)\hat{U}^{\dagger}(t), \qquad (1)$$

from which we can compute $\hat{\rho}^n(t)$ using the fact that \hat{U} is unitary *i.e.* $\hat{U}(t)\hat{U}^{\dagger}(t) = \hat{U}^{\dagger}(t)\hat{U}(t) = \hat{\mathbb{I}},$

$$\hat{\rho}^{n}(t) = \hat{U}(t)\hat{\rho}^{n}(0)\hat{U}^{\dagger}(t) .$$
(2)

Now we trace over this and use the cyclic property of trace $\operatorname{Tr}(ABC) = \operatorname{Tr}(CAB) = \operatorname{Tr}(BCA)$ to get,

$$\operatorname{Tr}\left(\hat{\rho}^{n}(t)\right) = \operatorname{Tr}\left(\hat{\rho}^{n}(0)\right) = \sum_{i} \lambda_{i}^{n}, \qquad (3)$$

where $\{\lambda_i\}$ is the set of eigenvalues of $\hat{\rho}(0)$.

(b.) While one can compute the asked traces and determinant explicitly by considering a generic qubit state and its corresponding 2×2 density operator, we will follow a much compact approach, harnessing properties of traces. In what follows, denote λ_1 and λ_2 to be the eigenvalues of the density matrix of the qubit state $\hat{\rho}$.

It is easily seen that,

$$\operatorname{Tr}\left(\hat{\rho}^{n}\right) = \lambda_{1}^{n} + \lambda_{2}^{n} \,. \tag{4}$$

In particular we have $\operatorname{Tr}(\hat{\rho}) = \lambda_1 + \lambda_2 = 1$ since the density operator has unit trace and $\operatorname{Tr}(\hat{\rho}^2) = \lambda_1^2 + \lambda_2^2$. Also, one can notice that $\det(\rho) = \lambda_1 \lambda_2$. Okay, now let's use some kindergarden arithmetic: $(\lambda_1 + \lambda_2)^2 = \lambda_1^2 + \lambda_2^2 + 2\lambda_1 \lambda_2$, which in our context is gives us the determinant we are looking for,

$$\det(\rho) = \frac{1}{2} \left(\operatorname{Tr}^2(\hat{\rho}) - \operatorname{Tr}(\hat{\rho}^2) \right) = \frac{1}{2} \left(\operatorname{Tr}(\hat{\rho}) - \operatorname{Tr}(\hat{\rho}^2) \right) \,. \tag{5}$$

Now, consider $\lambda_1^3 + \lambda_2^3 = (\lambda_1 + \lambda_2)(\lambda_1^2 + \lambda_2^2 - \lambda_1\lambda_2)$, from which one can directly write,

$$\operatorname{Tr}(\hat{\rho}^{3}) = \operatorname{Tr}(\rho)\left(\operatorname{Tr}(\hat{\rho}^{2}) - \det(\rho)\right) = \operatorname{Tr}(\rho)\left(\frac{3}{2}\operatorname{Tr}(\hat{\rho}^{2}) - \frac{1}{2}\operatorname{Tr}(\hat{\rho})\right)$$
(6)

Of course, $\operatorname{Tr} \hat{\rho} = 1$ everywhere above. If you feel like, you can also compute these by considering a generic qubit state $\hat{\rho} = \hat{\mathbb{I}}/2 + \vec{a} \cdot \hat{\sigma}/2$ and find $\hat{\rho}^2$ and $\hat{\rho}^3$ and find the traces and determinant asked for.

2 More on von Neumann Entropy (5 points)

(a.) This one can be argued simply by observing the fact that a unitary transformation of $\hat{\rho}$ simply corresponds to a global basis change and eigenvalues of a matrix are left invariant under a basis change/unitary transformation and hence, the von Neumann entropy, which can

be constructed using only the eigenvalues of $\hat{\rho}$ only is invariant too.

(b.) Onto proving concavity now. First, it is important to mention that, in general, $\hat{\rho}$, $\hat{\rho}_1$ and $\hat{\rho}_2$ will not commute and hence will *not* be simultaneously diagonalizable. Let us work in the eigenbasis of $\hat{\rho}$ which we label $|\rho_m\rangle$ with corresponding eigenvalue ρ_m (We will use single subscripts for eigen properties and double indices will be used to denote matrix elements.) The von Neumann entropy of $\hat{\rho}$ is simply given by,

$$S(\hat{\rho}) = \sum_{m} -\rho_m \log\left(\rho_m\right) \equiv \sum_{m} s(\rho_m) , \qquad (7)$$

where the function $s(x) = -x \log(x)$. This is a concave in the domain [0, 1] since its second derivative $f'' \leq 0$ and hence it satisfies a concavity condition, for any $\alpha \in [0, 1]$

$$s((1-\alpha)x + \alpha y) \ge (1-\alpha)s(x) + \alpha s(y).$$
(8)

We will use this property heavily in this proof. Notice how the eigenvalue ρ_m of $\hat{\rho}$ can be written as,

$$\rho_m = \langle \rho_m | \hat{\rho} | \rho_m \rangle = p_1 \langle \rho_m | \hat{\rho}_1 | \rho_m \rangle + p_2 \langle \rho_m | \hat{\rho}_2 | \rho_m \rangle , \qquad (9)$$

where we used $\hat{\rho} = p_1 \hat{\rho}_1 + p_2 \hat{\rho}_2$ as given in the question. Now since each of the terms in the summand of Eq. (7) is concave, we can use the concavity property of Eq. (8) to write,

$$s(\rho_m) \ge p_1 s(\langle \rho_m | \hat{\rho}_1 | \rho_m \rangle) + p_2 s(\langle \rho_m | \hat{\rho}_2 | \rho_m \rangle), \qquad (10)$$

and a simple sum over m reads,

$$S(\hat{\rho}) \ge p_1 \sum_m s(\langle \rho_m | \hat{\rho}_1 | \rho_m \rangle) + p_2 \sum_m s(\langle \rho_m | \hat{\rho}_2 | \rho_m \rangle) .$$
(11)

Now life would have been nice and simple had $\hat{\rho}_1$ and $\hat{\rho}_2$ been diagonal in the $|\rho_m\rangle$ (eigenbasis of $\hat{\rho}$) basis and we could have identified the sums on the right side of Eq. (11) as the von Neumann entropies $S(\hat{\rho}_1)$ and $S(\hat{\rho}_2)$, but well, in general $s(\langle \rho_m | \hat{\rho}_1 | \rho_m \rangle)$ and $s(\langle \rho_m | \hat{\rho}_1 | \rho_m \rangle)$ are not the eigenvalues of $\hat{\rho}_1$ and $\hat{\rho}_2$, but just the diagonal entries of the density matrices of $\hat{\rho}_1$ and $\hat{\rho}_2$ in the $\{|\rho_m\rangle\}$ basis. Let us now try and make contact with the von Neumann entropies of $\hat{\rho}_1$ and $\hat{\rho}_2$ using these diagonal entries.

Let me state and prove a general result that we will end up needing. We will now show that,

$$-\sum_{n} \lambda_{nn} \log \left(\lambda_{nn} \right) \ge S(\hat{\rho}) , \qquad (12)$$

where $\hat{\rho}$ is any density operator and λ_{nn} are its diagonal entries in *any* basis, not necessarily its eigenbasis (The inequality will become an equality when we work in the eigenbasis). Let us write $\hat{\rho}$ in both its eigenbasis $\{|\rho_m\rangle\}$ and some other basis $\{|\lambda_n\rangle\}$,

$$\hat{\rho} = \sum_{m} \rho_{m} \left| \rho_{m} \right\rangle \left\langle \rho_{m} \right| = \sum_{n,n'} \lambda_{nn'} \left| \lambda_{n'} \right\rangle \left\langle \lambda_{n} \right| \,. \tag{13}$$

To connect these two and be able to write the diagonal entries λ_{nn} in terms of the eigenvalues ρ_m , let's introduce two complete set of states as follows,

$$\hat{\rho} = \sum_{m} \rho_m \sum_{n,n'} |\lambda_n\rangle \left\langle \lambda_n | \left(|\rho_m\rangle \left\langle \rho_m | \right) |\lambda_{n'}\rangle \left\langle \lambda_{n'} \right| \right.$$
(14)

from which we can read the diagonal entries λ_{nn} simply,

$$\lambda_{nn} = \sum_{m} \rho_m \left| \langle \lambda_n | \rho_m \rangle \right|^2 \,. \tag{15}$$

These overlaps are expansion coefficients of eigenstates $|\rho_m\rangle$ in the $\{|\lambda_n\rangle\}$ basis and one can easily they verify they satisfy,

$$\sum_{n} |\langle \lambda_n | \rho_m \rangle|^2 = 1.$$
(16)

Hence, we notice, each diagonal term is a weighted sum of eigenvalues as shown by Eq. (15) with all weights summing to unity and hence we can invoke concavity again to write,

$$-\lambda_{nn}\log\left(\lambda_{nn}\right) \ge \sum_{m} |\langle\lambda_{n}|\rho_{m}\rangle|^{2} \left(-\rho_{m}\log\left(\rho_{m}\right)\right)$$
(17)

This concludes our digression proof. Return to where we left off for concavity and now we simply apply this general inequality result to each of the $\hat{\rho}_1$ and $\hat{\rho}_2$ diagonal terms of Eq. (11) and perform the sum to get the desired concavity answer,

$$S(\hat{\rho}) \ge p_1 S(\hat{\rho}_1) + p_2 S(\hat{\rho}_2)$$
 (18)

(c.) Consider the separable state $\hat{\rho}_{AB} = \hat{\rho}_A \otimes \hat{\rho}_B$. For concreteness take dim $(A) = d_A$ and dim $(B) = d_B$ and hence the dimension of Hilbert space on which $\hat{\rho}_{AB}$ lives is simply $d = d_A d_B$. Let's label the *d* eigenvalues of $\hat{\rho}_{AB}$ as λ_k with $k = 1, 2, \dots, d$. Also, label the eigenvalues of $\hat{\rho}_A$ as α_i , $i = 1, 2, \dots, d_A$ and those of $\hat{\rho}_B$ as β_j , $j = 1, 2, \dots, d_B$. One can now construct a bijective map which relates the $d = d_A d_B$ eigenvalues of $\hat{\rho}_{AB}$ with those of $\hat{\rho}_A$ and $\hat{\rho}_B$,

$$\lambda_k = \alpha_i \beta_j , \ k \equiv (i, j) \text{ with } i = 1, 2, \cdots, d_A \text{ and } k = 1, 2, \cdots, d_B .$$
(19)

Now, let's get to the entropy.

$$S(\hat{\rho}_{AB}) = \sum_{k=1}^{d} \lambda_k \log\left(\lambda_k\right) = \sum_{i=1}^{d_A} \sum_{j=1}^{d_B} (\alpha_i \beta_j) \log\left(\alpha_i \beta_j\right).$$
(20)

We can now split the log to get,

$$S(\hat{\rho}_{AB}) = \sum_{j=1}^{d_B} \beta_j \sum_{i=1}^{d_A} \alpha_i \log(\alpha_i) + \sum_{i=1}^{d_A} \alpha_i \sum_{j=1}^{d_B} \beta_j \log(\beta_j) .$$
(21)

Now notice, $S(\hat{\rho}_A) = \sum_{i=1}^{d_A} \alpha_i \log(\alpha_i)$ and $S(\hat{\rho}_B) = \sum_{j=1}^{d_B} \beta_j \log(\beta_j)$ and also that the sum of eigenvalues of any density operator is its trace which is unity, *i.e.* $\sum_{i=1}^{d_A} \alpha_i = \sum_{j=1}^{d_B} \beta_j = 1$, which gives us the required result,

$$S(\hat{\rho}_{AB}) = S(\hat{\rho}_A) + S(\hat{\rho}_B).$$
⁽²²⁾

3 Let's measure a GHZ! (5 points)

(a.) Let us construct the projection operators corresponding to measurement in the $\{|\pm x\rangle\}$ basis,

$$\hat{P}_{+} = |+x\rangle \langle +x| , \qquad (23)$$

$$\hat{P}_{-} = \left| -x \right\rangle \left\langle -x \right| \,. \tag{24}$$

One can now easily see that this set of projection operators satisfies all the required conditions for being a *Projective Value Measurement (PVM)*. The set of projection operators are

- 1. Hermitian: $\hat{P}^{\dagger}_{+} = \hat{P}_{+}, \ \hat{P}^{\dagger}_{-} = \hat{P}_{-},$
- 2. Complete: $\hat{P}_{+} + \hat{P}_{-} = |0\rangle \langle 0| + |1\rangle \langle 1| = \hat{\mathbb{I}},$
- 3. Orthogonal Projectors: $\hat{P}_+\hat{P}_+ = \hat{P}_+, \ \hat{P}_-\hat{P}_- = \hat{P}_-, \ \hat{P}_+\hat{P}_- = \hat{P}_-\hat{P}_+ = 0$
- 4. Positive: eigenvalues of \hat{P}_+ and \hat{P}_- are 0 and 2 which are ≥ 0

(b.) The pre-measurement GHZ density operator is simply,

$$\hat{\rho}_0 = |\text{GHZ}\rangle \langle \text{GHZ}| = \frac{1}{2} \left(|000\rangle \langle 000| + |000\rangle \langle 111| + |111\rangle \langle 000| + |111\rangle \langle 111| \right) , \qquad (25)$$

where the convention I am following labels subsystems in states and their duals as $|ABC\rangle$ and $\langle ABC |$, respectively.

Okay, let's compute some projections now, but first notice the following overlaps which will be useful,

$$\langle +x|0\rangle = \langle +x|1\rangle = \frac{1}{\sqrt{2}}, \qquad (26)$$

$$\langle -x|0\rangle = -\langle -x|1\rangle = \frac{1}{\sqrt{2}}.$$
(27)

The following projections can now be easily computed,

$$\hat{P}_{+}\hat{\rho}_{0}\hat{P}_{+} = \frac{1}{4} |+x\rangle \langle +x| \otimes (|00\rangle \langle 00| + |00\rangle \langle 11| + |11\rangle \langle 00| + |11\rangle \langle 11|) , \qquad (28)$$

$$\hat{P}_{-}\hat{\rho}_{0}\hat{P}_{-} = \frac{1}{4} |-x\rangle \langle -x| \otimes (|00\rangle \langle 00| - |00\rangle \langle 11| - |11\rangle \langle 00| + |11\rangle \langle 11|) , \qquad (29)$$

which we can write more compactly as,

$$\hat{P}_{+}\hat{\rho}_{0}\hat{P}_{+} = \frac{1}{2} |+x\rangle \langle +x| \otimes \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}}\right) , \qquad (30)$$

$$\hat{P}_{-}\hat{\rho}_{0}\hat{P}_{-} = \frac{1}{2} |-x\rangle \langle -x| \otimes \left(\frac{|00\rangle - |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle 00| - \langle 11|}{\sqrt{2}}\right) \,. \tag{31}$$

It's a good idea to express the first qubit, on which the PVM projectors have been applied, in the measurement basis; in this case the $\{|\pm x\rangle\}$ basis since the outcome of such a measurement will be in the said basis. Expressing it in the standard $\{|0\rangle, |1\rangle\}$ basis is somewhat obscuring the interpretation of the PVM. Let us also compute the traces of these projections which will serve as normalization factors and probabilities as well,

$$\operatorname{Tr}(\hat{P}_{+}\hat{\rho}_{0}\hat{P}_{+}) = \operatorname{Tr}(\hat{P}_{-}\hat{\rho}_{0}\hat{P}_{-}) = \frac{1}{2}.$$
(32)

This can be easily seen from Eqs. (30) and (31) since $\operatorname{Tr}(\hat{P}_{+}) = \operatorname{Tr}(\hat{P}_{-}) = 1$ and also the residual states of the second and third qubits $\left(\frac{|00\rangle\pm|11\rangle}{\sqrt{2}}\right)$ are normalized too. The measurement interpretation of the PVM is that with probability $p_{+} = \operatorname{Tr}(\hat{P}_{+}\hat{\rho}_{0}\hat{P}_{+})$, the outcome of the measurement on the first qubit is observed to be "+x" and the post-measurement state in this case will be,

$$\hat{\rho}_{+} = \frac{\hat{P}_{+}\hat{\rho}_{0}\hat{P}_{+}}{\operatorname{Tr}\left(\hat{P}_{+}\hat{\rho}_{0}\hat{P}_{+}\right)},\tag{33}$$

and with probability $p_{-} = \text{Tr}(\hat{P}_{-}\hat{\rho}_{0}\hat{P}_{-})$, the outcome observed it,

$$\hat{\rho}_{-} = \frac{\hat{P}_{-}\hat{\rho}_{0}\hat{P}_{-}}{\operatorname{Tr}\left(\hat{P}_{-}\hat{\rho}_{0}\hat{P}_{-}\right)},\tag{34}$$

Okay, now we can simply state the questions asked for in the homework.

If the post-measurement state is not known to the observer, the density operator describing the GHZ will be given by,

$$\hat{\rho}_1 = p_+ \hat{\rho}_+ + p_- \hat{\rho}_- \,, \tag{35}$$

$$\hat{\rho}_1 = \frac{1}{2} |+x\rangle \langle +x| \otimes \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}}\right) + \frac{1}{2} |-x\rangle \langle -x| \otimes \left(\frac{|00\rangle - |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle 00| - \langle 11|}{\sqrt{2}}\right).$$
(36)

On the other hand, for part (c.) with probability $p_{+} = 1/2$ we will observe the post-measurement state to be $\hat{\rho}_{+}$ of Eq. (33) in which case the residual state of the second and third qubits can simply be "read-off" as,

$$|\psi_{23}^+\rangle = \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right) \,. \tag{37}$$

The other possibility of the measurement outcome is observing the "-x" outcome for the first qubit with probability $p_{-} = 1/2$, in which case the GHZ state is given by $\hat{\rho}_{-}$ of Eq. (34) and the residual state of the other two qubits will be,

$$|\psi_{23}^{-}\rangle = \left(\frac{|00\rangle - |11\rangle}{\sqrt{2}}\right) \,. \tag{38}$$

It is worth pointing out here that even though we found pure residual states for the other two qubits; in general, the residual state of sub-systems on which measurement is not performed will be mixed.

4 Thermal Spins in a B-field (5 points)

In this question, for all our matrix representations, we will exclusively work in the $\hat{\sigma}_z$ basis. The Hamiltonian of the spin 1/2 particle in the B-field is simply,

$$\hat{H} = -\frac{\gamma B}{2}\hat{\sigma}_z \equiv \begin{bmatrix} -\frac{\omega}{2} & 0\\ 0 & \frac{\omega}{2} \end{bmatrix}, \qquad (39)$$

where we have defined $\omega = \gamma B$ for convenience. Now since the particle is a part of a thermal ensemble at temperature $T \equiv 1/k_B\beta$ with k_B being the Boltzmann constant, its density operator is thermal,

$$\hat{\rho} = \frac{\exp(-\beta \hat{H})}{\operatorname{Tr}\left(\exp(-\beta \hat{H})\right)}.$$
(40)

Since we are asked to work in the $\hat{\sigma}_z$ basis in which \hat{H} is diagonal, hence $\exp(-\beta \hat{H})$ will be diagonal in this basis too, given by,

$$\exp(-\beta \hat{H}) \equiv \begin{bmatrix} e^{\beta \omega/2} & 0\\ 0 & e^{-\beta \omega/2} \end{bmatrix}, \qquad (41)$$

whose trace is simply ${\rm Tr} \left(\exp(-\beta \hat{H}) \right) = e^{\beta \omega/2} + e^{-\beta \omega/2}$ and hence,

$$\rho = \frac{1}{e^{\beta\omega/2} + e^{-\beta\omega/2}} \begin{bmatrix} e^{\beta\omega/2} & 0\\ 0 & e^{-\beta\omega/2} \end{bmatrix}.$$
(42)

(b.) Now we compute the expectation values of $\hat{\vec{\sigma}}$ for the particle in this thermal ensemble. For $\hat{\sigma}_l$, the expectation value is given by,

$$\langle \hat{\sigma}_l \rangle = \operatorname{Tr} \left(\hat{\sigma}_l \hat{\rho} \right). \tag{43}$$

It can now be seen rather straightforwardly by matrix multiplication and taking the trace that $\langle \hat{\sigma}_x \rangle = \langle \hat{\sigma}_y \rangle = 0$ and,

$$\langle \hat{\sigma}_z \rangle = \frac{e^{\beta \omega/2} - e^{-\beta \omega/2}}{e^{\beta \omega/2} + e^{-\beta \omega/2}} = \tanh\left(\frac{\beta \omega}{2}\right) \tag{44}$$

(c.) Now we can compute the average magnetization of N such particles in the thermal ensemble,

$$\vec{M} = \frac{N\gamma}{2} \left(\langle \hat{\sigma}_x \rangle \, \hat{i} + \langle \hat{\sigma}_y \rangle \, \hat{j} + \langle \hat{\sigma}_z \rangle \, \hat{k} \right) \,, \tag{45}$$

where the expectations are the single particle expectations computed in part (b) above and $\{\hat{i}, \hat{j}, \hat{k}\}$ are spatial unit vectors along x, y and z directions, respectively. This gives us,

$$\vec{M} = \frac{N\gamma}{2} \tanh\left(\frac{\beta\omega}{2}\right) \hat{z} \,. \tag{46}$$

Now we consider the high temperature or the small β limit and Taylor expand the magnitude of \vec{M} to linear order in β to get the characteristic Curie's Law 1/T dependence of the magnetization,

$$M = \frac{N\gamma^2 B}{4k_B} \frac{1}{T} + \mathcal{O}\left(\frac{1}{T^3}\right) \,. \tag{47}$$