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1 Traces, Traces Everywhere (5 points)

(a.) Okay, so the time evolved state is given by,

ρ̂(t) = Û(t)ρ̂(0)Û †(t) , (1)

from which we can compute ρ̂n(t) using the fact that Û is unitary i.e. Û(t)Û †(t) = Û †(t)Û(t) =
Î,

ρ̂n(t) = Û(t)ρ̂n(0)Û †(t) . (2)

Now we trace over this and use the cyclic property of trace Tr (ABC) = Tr (CAB) = Tr (BCA)
to get,

Tr (ρ̂n(t)) = Tr (ρ̂n(0)) =
∑
i

λni , (3)

where {λi} is the set of eigenvalues of ρ̂(0).

(b.) While one can compute the asked traces and determinant explicitly by considering a
generic qubit state and its corresponding 2× 2 density operator, we will follow a much compact
approach, harnessing properties of traces. In what follows, denote λ1 and λ2 to be the eigen-
values of the density matrix of the qubit state ρ̂.
It is easily seen that,

Tr (ρ̂n) = λn1 + λn2 . (4)

In particular we have Tr (ρ̂) = λ1 + λ2 = 1 since the density operator has unit trace and
Tr (ρ̂2) = λ21 + λ22. Also, one can notice that det(ρ) = λ1λ2. Okay, now let’s use some kinder-
garden arithmetic: (λ1+λ2)

2 = λ21+λ22+2λ1λ2, which in our context is gives us the determinant
we are looking for,

det(ρ) =
1

2

(
Tr 2(ρ̂)− Tr (ρ̂2)

)
=

1

2

(
Tr (ρ̂)− Tr (ρ̂2)

)
. (5)

Now, consider λ31 + λ32 = (λ1 + λ2)(λ
2
1 + λ22 − λ1λ2), from which one can directly write,

Tr (ρ̂3) = Tr (ρ)
(
Tr (ρ̂2)− det(ρ)

)
= Tr (ρ)

(
3

2
Tr (ρ̂2)− 1

2
Tr (ρ̂)

)
(6)

Of course, Tr ρ̂ = 1 everywhere above. If you feel like, you can also compute these by considering
a generic qubit state ρ̂ = Î/2 + ~a · σ̂/2 and find ρ̂2 and ρ̂3 and find the traces and determinant
asked for.

2 More on von Neumann Entropy (5 points)

(a.) This one can be argued simply by observing the fact that a unitary transformation of
ρ̂ simply corresponds to a global basis change and eigenvalues of a matrix are left invariant
under a basis change/unitary transformation and hence, the von Neumann entropy, which can
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be constructed using only the eigenvalues of ρ̂ only is invariant too.

(b.) Onto proving concavity now. First, it is important to mention that, in general, ρ̂, ρ̂1
and ρ̂2 will not commute and hence will not be simultaneously diagonalizable. Let us work in
the eigenbasis of ρ̂ which we label |ρm〉 with corresponding eigenvalue ρm (We will use single
subscripts for eigen properties and double indices will be used to denote matrix elements.) The
von Neumann entropy of ρ̂ is simply given by,

S(ρ̂) =
∑
m

−ρmlog (ρm) ≡
∑
m

s(ρm) , (7)

where the function s(x) = −x log(x). This is a concave in the domain [0, 1] since its second
derivative f ′′ ≤ 0 and hence it satisfies a concavity condition, for any α ∈ [0, 1]

s((1− α)x+ αy) ≥ (1− α)s(x) + αs(y) . (8)

We will use this property heavily in this proof. Notice how the eigenvalue ρm of ρ̂ can be written
as,

ρm = 〈ρm|ρ̂|ρm〉 = p1 〈ρm|ρ̂1|ρm〉+ p2 〈ρm|ρ̂2|ρm〉 , (9)

where we used ρ̂ = p1ρ̂1 + p2ρ̂2 as given in the question. Now since each of the terms in the
summand of Eq. (7) is concave, we can use the concavity property of Eq. (8) to write,

s(ρm) ≥ p1s(〈ρm|ρ̂1|ρm〉) + p2s(〈ρm|ρ̂2|ρm〉) , (10)

and a simple sum over m reads,

S(ρ̂) ≥ p1
∑
m

s(〈ρm|ρ̂1|ρm〉) + p2
∑
m

s(〈ρm|ρ̂2|ρm〉) . (11)

Now life would have been nice and simple had ρ̂1 and ρ̂2 been diagonal in the |ρm〉 (eigenbasis of
ρ̂) basis and we could have identified the sums on the right side of Eq. (11) as the von Neumann
entropies S(ρ̂1) and S(ρ̂2), but well, in general s(〈ρm|ρ̂1|ρm〉) and s(〈ρm|ρ̂1|ρm〉) are not the
eigenvalues of ρ̂1 and ρ̂2, but just the diagonal entries of the density matrices of ρ̂1 and ρ̂2 in
the {|ρm〉} basis. Let us now try and make contact with the von Neumann entropies of ρ̂1 and
ρ̂2 using these diagonal entries.

Let me state and prove a general result that we will end up needing. We will now show
that,

−
∑
n

λnnlog (λnn) ≥ S(ρ̂) , (12)

where ρ̂ is any density operator and λnn are its diagonal entries in any basis, not necessarily
its eigenbasis (The inequality will become an equality when we work in the eigenbasis). Let us
write ρ̂ in both its eigenbasis {|ρm〉} and some other basis {|λn〉},

ρ̂ =
∑
m

ρm |ρm〉 〈ρm| =
∑
n,n′

λnn′ |λn′〉 〈λn| . (13)

To connect these two and be able to write the diagonal entries λnn in terms of the eigenvalues
ρm, let’s introduce two complete set of states as follows,

ρ̂ =
∑
m

ρm
∑
n,n′

|λn〉 〈λn| (|ρm〉 〈ρm|) |λn′〉 〈λn′ | , (14)
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from which we can read the diagonal entries λnn simply,

λnn =
∑
m

ρm |〈λn|ρm〉|2 . (15)

These overlaps are expansion coefficients of eigenstates |ρm〉 in the {|λn〉} basis and one can
easily they verify they satisfy, ∑

n

|〈λn|ρm〉|2 = 1 . (16)

Hence, we notice, each diagonal term is a weighted sum of eigenvalues as shown by Eq. (15)
with all weights summing to unity and hence we can invoke concavity again to write,

−λnnlog (λnn) ≥
∑
m

|〈λn|ρm〉|2 (−ρmlog (ρm)) (17)

This concludes our digression proof. Return to where we left off for concavity and now we
simply apply this general inequality result to each of the ρ̂1 and ρ̂2 diagonal terms of Eq. (11)
and perform the sum to get the desired concavity answer,

S(ρ̂) ≥ p1S(ρ̂1) + p2S(ρ̂2) . (18)

(c.) Consider the separable state ρ̂AB = ρ̂A ⊗ ρ̂B. For concreteness take dim (A) = dA and
dim (B) = dB and hence the dimension of Hilbert space on which ρ̂AB lives is simply d = dAdB.
Let’s label the d eigenvalues of ρ̂AB as λk with k = 1, 2, · · · , d. Also, label the eigenvalues of
ρ̂A as αi, i = 1, 2, · · · , dA and those of ρ̂B as βj , j = 1, 2, · · · , dB. One can now construct a
bijective map which relates the d = dAdB eigenvalues of ρ̂AB with those of ρ̂A and ρ̂B,

λk = αiβj , k ≡ (i, j) with i = 1, 2, · · · , dA and k = 1, 2, · · · , dB . (19)

Now, let’s get to the entropy.

S(ρ̂AB) =

d∑
k=1

λklog (λk) =

dA∑
i=1

dB∑
j=1

(αiβj)log (αiβj) . (20)

We can now split the log to get,

S(ρ̂AB) =

dB∑
j=1

βj

dA∑
i=1

αilog (αi) +

dA∑
i=1

αi

dB∑
j=1

βj log (βj) . (21)

Now notice, S(ρ̂A) =
∑dA

i=1 αilog (αi) and S(ρ̂B) =
∑dB

j=1 βj log (βj) and also that the sum of

eigenvalues of any density operator is its trace which is unity, i.e.
∑dA

i=1 αi =
∑dB

j=1 βj = 1,
which gives us the required result,

S(ρ̂AB) = S(ρ̂A) + S(ρ̂B) . (22)

3



3 Let’s measure a GHZ! (5 points)

(a.) Let us construct the projection operators corresponding to measurement in the {|±x〉}
basis,

P̂+ = |+x〉 〈+x| , (23)

P̂− = |−x〉 〈−x| . (24)

One can now easily see that this set of projection operators satisfies all the required conditions
for being a Projective Value Measurement (PVM). The set of projection operators are

1. Hermitian: P̂ †+ = P̂+, P̂ †− = P̂−,

2. Complete: P̂+ + P̂− = |0〉 〈0|+ |1〉 〈1| = Î,

3. Orthogonal Projectors: P̂+P̂+ = P̂+, P̂−P̂− = P̂−, P̂+P̂− = P̂−P̂+ = 0

4. Positive: eigenvalues of P̂+ and P̂− are 0 and 2 which are ≥ 0

(b.) The pre-measurement GHZ density operator is simply,

ρ̂0 = |GHZ〉 〈GHZ| = 1

2
(|000〉 〈000|+ |000〉 〈111|+ |111〉 〈000|+ |111〉 〈111|) , (25)

where the convention I am following labels subsystems in states and their duals as |ABC〉 and
〈ABC|, respectively.

Okay, let’s compute some projections now, but first notice the following overlaps which will
be useful,

〈+x|0〉 = 〈+x|1〉 =
1√
2
, (26)

〈−x|0〉 = −〈−x|1〉 =
1√
2
. (27)

The following projections can now be easily computed,

P̂+ρ̂0P̂+ =
1

4
|+x〉 〈+x| ⊗ (|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|) , (28)

P̂−ρ̂0P̂− =
1

4
|−x〉 〈−x| ⊗ (|00〉 〈00| − |00〉 〈11| − |11〉 〈00|+ |11〉 〈11|) , (29)

which we can write more compactly as,

P̂+ρ̂0P̂+ =
1

2
|+x〉 〈+x| ⊗

(
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

)
, (30)

P̂−ρ̂0P̂− =
1

2
|−x〉 〈−x| ⊗

(
|00〉 − |11〉√

2

)(
〈00| − 〈11|√

2

)
. (31)

It’s a good idea to express the first qubit, on which the PVM projectors have been applied, in
the measurement basis; in this case the {|±x〉} basis since the outcome of such a measurement
will be in the said basis. Expressing it in the standard {|0〉 , |1〉} basis is somewhat obscuring
the interpretation of the PVM. Let us also compute the traces of these projections which will
serve as normalization factors and probabilities as well,

Tr (P̂+ρ̂0P̂+) = Tr (P̂−ρ̂0P̂−) =
1

2
. (32)
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This can be easily seen from Eqs. (30) and (31) since Tr (P̂+) = Tr (P̂−) = 1 and also the

residual states of the second and third qubits
(
|00〉±|11〉√

2

)
are normalized too. The measurement

interpretation of the PVM is that with probability p+ = Tr (P̂+ρ̂0P̂+), the outcome of the
measurement on the first qubit is observed to be “+x” and the post-measurement state in this
case will be,

ρ̂+ =
P̂+ρ̂0P̂+

Tr (P̂+ρ̂0P̂+)
, (33)

and with probability p− = Tr (P̂−ρ̂0P̂−), the outcome observed it,

ρ̂− =
P̂−ρ̂0P̂−

Tr (P̂−ρ̂0P̂−)
, (34)

Okay, now we can simply state the questions asked for in the homework.

If the post-measurement state is not known to the observer, the density operator describing
the GHZ will be given by,

ρ̂1 = p+ρ̂+ + p−ρ̂− , (35)

ρ̂1 =
1

2
|+x〉 〈+x|⊗

(
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

)
+

1

2
|−x〉 〈−x|⊗

(
|00〉 − |11〉√

2

)(
〈00| − 〈11|√

2

)
.

(36)
On the other hand, for part (c.) with probability p+ = 1/2 we will observe the post-measurement
state to be ρ̂+ of Eq. (33) in which case the residual state of the second and third qubits can
simply be “read-off” as,

|ψ+
23〉 =

(
|00〉+ |11〉√

2

)
. (37)

The other possibility of the measurement outcome is observing the “−x” outcome for the first
qubit with probability p− = 1/2, in which case the GHZ state is given by ρ̂− of Eq. (34) and
the residual state of the other two qubits will be,

|ψ−23〉 =

(
|00〉 − |11〉√

2

)
. (38)

It is worth pointing out here that even though we found pure residual states for the other two
qubits; in general, the residual state of sub-systems on which measurement is not performed
will be mixed.

4 Thermal Spins in a B-field (5 points)

In this question, for all our matrix representations, we will exclusively work in the σ̂z basis.
The Hamiltonian of the spin 1/2 particle in the B-field is simply,

Ĥ = −γB
2
σ̂z ≡

[
−ω

2 0

0 ω
2

]
, (39)

where we have defined ω = γB for convenience. Now since the particle is a part of a thermal
ensemble at temperature T ≡ 1/kBβ with kB being the Boltzmann constant, its density operator
is thermal,

ρ̂ =
exp(−βĤ)

Tr (exp(−βĤ))
. (40)
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Since we are asked to work in the σ̂z basis in which Ĥ is diagonal, hence exp(−βĤ) will be
diagonal in this basis too, given by,

exp(−βĤ) ≡

[
eβω/2 0

0 e−βω/2

]
, (41)

whose trace is simply Tr (exp(−βĤ)) = eβω/2 + e−βω/2 and hence,

ρ =
1

eβω/2 + e−βω/2

[
eβω/2 0

0 e−βω/2

]
. (42)

(b.) Now we compute the expectation values of ~̂σ for the particle in this thermal ensemble.
For σ̂l, the expectation value is given by,

〈σ̂l〉 = Tr (σ̂lρ̂) . (43)

It can now be seen rather straightforwardly by matrix multiplication and taking the trace that
〈σ̂x〉 = 〈σ̂y〉 = 0 and,

〈σ̂z〉 =
eβω/2 − e−βω/2

eβω/2 + e−βω/2
= tanh

(
βω

2

)
(44)

(c.) Now we can compute the average magnetization of N such particles in the thermal ensem-
ble,

~M =
Nγ

2

(
〈σ̂x〉 î+ 〈σ̂y〉 ĵ + 〈σ̂z〉 k̂

)
, (45)

where the expectations are the single particle expectations computed in part (b) above and
{̂i, ĵ, k̂} are spatial unit vectors along x, y and z directions, respectively. This gives us,

~M =
Nγ

2
tanh

(
βω

2

)
ẑ . (46)

Now we consider the high temperature or the small β limit and Taylor expand the magni-
tude of ~M to linear order in β to get the characteristic Curie’s Law 1/T dependence of the
magnetization,

M =
Nγ2B

4kB

1

T
+O

(
1

T 3

)
. (47)

—————————————————————————————————————–
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